Structural Parameters of Globular Clusters and UCDs in Virgo and Coma

Juan P. Madrid Swinburne University Melbourne, Australia

Collaborators: William E. Harris (McMaster Canada) John Blakeslee (HRC, Canada) Matias Gomez (U. Andres Bello, Chile)

SWINBURNE UNIVERSITY OF TECHNOLOGY

The M87 Ultra Deep Field

- The data was acquired using two filters:
- ✓ F606W (V) 49 images
 24500 s
- ✓ F814W (I) 205 images
 73800 s
- APSIS the original ACS pipeline was used for final image combination (Blakeslee, 2003)

Elliptical Galaxy M87

NASA, ESA, and the Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC-08-30b

M87 Globular Cluster System

- M87 contains the largest GCS of the local Universe with 14000+ members (Tamura et al. 2006)
- We have detected 2010 cluster candidates
- Superb statistical sample!

ISHAPE

User-friendly software developed by Soren Larsen (Larsen, 1999)

ISHAPE convolves an analytical model of the cluster SB profile (e.g. King, Sersic model) with the PSF

Finds best fit to data by varying cluster FWHM

Obtain r_h , ellipticity, position angle, $c=r_t/r_c$

ISHAPE, an example

We performed this fit for 2010 M87 clusters

Effective Radius F606W, F814W

- ISHAPE yields a robust measurement of r_h
- If FWHM_{cluster}>0.1 FWHM_{PSF} ISHAPE recovers structural parameters
- King model, $c=r_t/r_c = 30$
- All clusters have S/N>50

Effective radius

- The effective radius of most clusters lies between 1 and 6 pc
- Good agreement with MW clusters
- M87 & MW different Hubble type same r_h for globular clusters! (Ashman & Zepf 1998)

Madrid et al. 2009, ApJ, 705, 237

Mass Segregation?

Size difference vs. λ

- r_h F606W > r_h F814W
- Massive stars sink to center of cluster ---> r_h becomes smaller in redder bandpasses
- N-body code predicts r_h in V ~5% larger than in I (Hurley 2008) (10⁵ M_o 10-12Gy)

Median=1.02 +/- 0.006 STD=0.24

Effective Radius vs. Galactocentric Distance

- Diameter of GCs in the LMC increases with R_{GC} (Hodge 1952)
- For Milky Way Clusters-3D $r_h \sim (R_{GC})^{0.5}$ (van den Bergh 1956, 1991)
- ACS/WFC allows sampling at large R_{GC}

▲Projected Galoctocentric Distance

The Cosmic H

Cosmic H and Petronas Towers credit: Lee Spitler (M49) & Duncan Forbes

Petronas Towers, Kuala Lumpur

r_h vs. color

- Median r_h for red clusters is 2.1 pc
- Median r_h for blue clusters is 2.6 pc
- Good agreement with previous estimates of size difference ~24% (Larsen 2001, Spitler et al. 2006)

Further away: Coma Cluster

Coma Cluster of Galaxies

Hubble Heritage

NASA, ESA, and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC08-24

Ultra-Compact Dwarfs

Ultra-Compact Dwarfs

Ultra-Compact Dwarfs: "A Mixed Bag of Objects" (Hilker 2006) SMSC, UDSC, IMO, DGTO

