

Laura Ceccarelli

0

FOF meeting

11th april 2011

0

www.free-power-point-templates.com

Voids:

large scale underdense regions

General characteristics

- → Density contrast of voids: δ <-0.8
- Extremely low density contrast at void centers
- → Wall surrounding the voids
- Roughly spherical shapes
- → Sizes of tens of Mpcs

Void finding algorithm

- Select the largest underdense sphere ($\delta_{sphere} < \delta_c = -0.9$).
- Eliminate overlapping spheres
- Galaxy surveys
 → volume limited samples
 - SDSS
 - 2dFGRS

www.fppt.info

Properties of galaxies in voids and walls

Red Galaxy Fraction as a Function of Luminosity and Local Density

Ceccarelli, Padilla & Lambas. 2008.

Wall galaxies in groups

High luminosity galaxies in groups.

Ceccarelli, Padilla & Lambas. 2008.

Galaxy Groups and Voids

Relative density of SDSS groups as a function of distance to the void centre for different virial a mass =

N_gru/<N_gru>

Low-mass groups \rightarrow higher profile up to 2 r_void

Massive groups → approximately constant profile outside voids

Groups in walls less massive than groups in field

Properties of galaxies in voids

Low Surface Brightness galaxies (LSB) are more isolated than the rest of the galaxies.

Distribution of LSB on the SDSS large scale voids

LSB galaxies tend to inhabit void walls, specially the regions just before the void radius.

Properties of galaxies in voids

Relative fraction of LSB and HSB galaxies in SDSS

Fraction of LSB galaxies are higher than HSB galaxies in voids

LSB galaxies tend to inhabit void and walls

www.free-power-point-templates.com

Void Evolution

Numerical Simulations —> two processes in void evolution

Lares, Paz, Ceccarelli, Padilla, Lambas. In preparation.

Redshit space distortions ↔ dynamical properties

Iso-contours of the void-galaxy cross-correlation function in the directions parallel and perpendicular to the line of sight (π and σ).

Compression \rightarrow infall

Elongation—outflow

Results from SDSS

15<Rvoid /Mpc/h< 30

Distortion pattern consistent with infall

Distortion pattern consistent with expansion

Lares, Paz, Ceccarelli, Padilla, Lambas. In preparation.

Galaxies residing in void walls are systematically bluer than

- field galaxies, at a given luminosity and local density range.
- Gataxies are subject to a large scale dependent starformation activity besides the influence of local environment.
- LSB galaxies tend to populate voids and walls.
- Large voids show expansion whereas the outer regiones of small voids are-collapsing
- It is also possible that the outflow of barionic particles, as part of the void expansion, inject material in walls causing star-formation activity in wall galaxies.