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Introduction: Motivations I

Friends from IATE show us their research[SR11] involving matter estimates coming from
galaxy dynamics and gravitational lensing observations.

Figure: From Serra-Dominguez article.
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Introduction: Motivations II

Figure: Our efforts to fit the lens data. First seven points correspond to Gavazzi[G+09] data and the last six point to

Kubo[JAJ+07] data.
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Introduction: Motivations III

Figure: Our efforts to fit the data.

Kubo[JAJ+07] data covers the larger radii regime.

The NFW fit to the Kubo data seems not to agree with the matter estimates
coming from galaxy dynamics studies.

We started a systematic study of gravitational lensing.
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Introduction: Standard gravitational lensing notation I

Standard gravitational lensing notation
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Figure: This graph shows the basic and familiar angular variables in terms of a simple flat background geometry. The letter
s denote sources, the letter l denotes lens and the observer is assumed to be situated at the apex of the rays.
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Introduction: Standard gravitational lensing notation II

In this framework the lens equation reads

βa = θa − dls
ds
αa. (1)

The differential of this equation can be written as

δβa = Aa
b δθ

b, (2)

where the matric Aa
b is in turn expressed by

Aa
b =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
; (3)

where the optical scalars κ, γ1 and γ2, are known as convergence κ and shear
components {γ1, γ2}, and have the information of distortion of the image of the source
due to the lens effects.
It is somehow striking that in most astronomical works on gravitational lensing, it is
assumed that the lens scalars and deflection angle, can be obtained from a
Newtonian-like potential function. These expressions although are easy to use, have
some limitations:

(FaMAF, UNC, CONICET) Gravitational lensing + solution FoF, IATE; April 11, 2011 8 / 32



Introduction: Standard gravitational lensing notation III

They neglect more general distribution of energy-momentum tensor Tab, in
particular they only take into account the timelike component of this tensor. In
this way they severely restrict the possible candidates to dark matter that can be
studied with these expressions.

They are not expressed in terms of gauge invariant quantities.

Since these expressions are written in terms of a potential function, it is not easily
seen how different components of Tab contribute in the generation of these images.

Most of them assume from the beginning that thin lens is a good approximation.

4 We extend the work appearing in standard references on gravitational
lensing[SEF92, SSE94, Wammb, Bar10] and present new expressions that do not
suffer from the limitations mentioned above.

4 We present gauge invariant expressions for the optical scalars and deflection angle
for some general class of matter distributions.

4 In this work we study gravitational lensing over a flat background.
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General equations: The geodesic deviation equation I

General equations: The geodesic deviation equation

Then a deviation vector at the source image can be expressed by

ςa = ςm̄a + ς̄ma. (4)

Using the GHP notation one can write the geodesic deviation equation as

0 = Þ(ς) + ςρ+ ς̄σ;

where Þ is the well behaved derivation of type {1, 1} in the direction of `(the null
geodesic vector of the congruence).
Defining X by

X =

(
ς
ς̄

)
; (5)

the equation for ς can be written as

`(`(X )) = −QX ; (6)

where Q is given by

Q =

(
Φ00 Ψ0

Ψ̄0 Φ00

)
; (7)
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General equations: The geodesic deviation equation II

with

Φ00 = −1

2
Rab`

a`b, (8)

and

Ψ0 = Cabcd`
amb`cmd . (9)

Therefore, this form of the equation only involves curvature quantities.
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Approximation method for solving the geodesic deviation
equation I

Approximation method for solving the geodesic deviation equation

Let us first transform to a first order differential equation. Defining V to be

V ≡ dX
dλ

; (10)

and

X ≡
(
X
V

)
; (11)

one obtains

`(X) =
dX

dλ
=

(
V
−Q X

)
= AX; (12)

with

A ≡
(

0 I
−Q 0

)
. (13)

Equation (12) can be re-expressed in integral form, which gives

X(λ) = X0 +

∫ λ

λ0

A(λ′)X(λ′) dλ′. (14)
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Approximation method for solving the geodesic deviation
equation II

The complete linear iteration is

X3(λ) =

(
I−

∫ λ
λ0

∫ λ′

λ0
Q ′′ dλ′′ dλ′ (λ− λ0)I−

∫ λ
λ0

∫ λ′

λ0
(λ′′ − λ0)Q ′′ dλ′′ dλ′

−
∫ λ
λ0

Q ′dλ′ I−
∫ λ
λ0

(λ′ − λ0)Q ′ dλ′

)
X0.

(15)
If the metric were flat (Q = 0), in order to get a deviation vector constructed from X1,
defined as X evaluated at λs = λ0 + ds , one must choose as initial condition

V(λ0) =
1

(λs − λ0)
X (λs = λ0+ds) =

1

ds
X1. (16)

Using a complex displacement ς of unit modulus; namely ς = e iϕ, to represent the
deviation vector, one can express the equation in the form

ςs(ϕ) =

[
1− 1

ds

∫ ds

0

λ′(ds − λ′)Φ00(λ′) dλ′ −
(

1

ds

∫ ds

0

λ′(ds − λ′)Ψ0(λ′) dλ′
)
e−2iϕ

]
e iϕ.

(17)
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Optical scalar in terms of the curvature I

Optical scalar in terms of the curvature

By taking real and imaginary part of previous equation one obtains

κ =
1

ds

∫ ds

0

λ′(ds − λ′)Φ′00 dλ
′, (18)

γ1 =
1

ds

∫ ds

0

λ′(ds − λ′)Ψ′0R dλ′, (19)

γ2 =
1

ds

∫ ds

0

λ′(ds − λ′)Ψ′0I dλ
′. (20)

These expressions for the weak field lens quantities are explicitly gauge invariant,
since they are given in terms of the curvature components,

Note that the last two equations can be written as

γ1 + iγ2 =
1

ds

∫ ds

0

λ′(ds − λ′)Ψ′0 dλ
′. (21)
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The thin lens approximation I

The general case

The expressions for the lens scalars are reduced to

κ =
dldls
ds

Φ̂00, (22)

γ1 + iγ2 =
dldls
ds

Ψ̂0, (23)

where

Φ̂00 =

∫ ds

0

Φ00dλ,

Ψ̂0 =

∫ ds

0

Ψ0dλ,

(24)

are the projected curvature scalars along the line of sight.
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The thin lens approximation II

The axially symmetric case

Let us define

Ψ̂0(J) = −e2iϑψ̂0(J), (25)

and
γ1 + iγ2 = −γe2iϑ; (26)

then one has

κ =
dlsdl
ds

Φ̂00(J), (27)

γ =
dlsdl
ds

ψ̂0(J), (28)

and

α(J) = J(Φ̂00(J) + ψ̂0(J)) . (29)

This constitutes a very simple equation for the bending angle expressed in terms of the
gauge invariant curvature components in compact form.
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Spherically symmetric lenses I

Expressions for the bending angle in terms of energy-momentum
components and M(r)

α(J) = J

∫ dls

−dl

[
3J2

r 2

(
M(r)

r 3
− 4π

3
%(r)

)
+ 4π (%(r) + Pr (r))

]
dy ; (30)

where r =
√

J2 + y 2.

Expressions for the lens scalars in terms of energy-momentum
components and M(r)

κ =
4πdldls

ds

∫ dls

−dl

[
ρ+ Pr +

J2

r 2
(Pt − Pr )

]
dy . (31)

γ =
dldls
ds

∫ dls

−dl

J2

r 2

[
3M

r 3
− 4π(ρ+ Pt − Pr )

]
dy . (32)
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Spherically symmetric lenses II

In contrast in text books one finds

Figure: Usual equations for gravitational lensing appearing in text books.
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An interesting solution of Einstein equations I

Preliminaries

A stationary spherically symmetric spacetime can be expressed in terms of the standard
line element

ds2 = a(r)dt2 − b(r)dr 2 − r 2(dθ2 + sin2 θdϕ2); (33)

where it is convenient to define Φ(r) and m(r) from

a(r) = e2Φ(r), (34)

and

b(r) =
1

1− 2m(r)
r

. (35)

The energy momentum tensor can be given by

Ttt = %e2Φ(r); (36)

Trr =
Pr(

1− 2m(r)
r

) ; (37)

Tθθ = Pt r
2; (38)
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An interesting solution of Einstein equations II

Tϕϕ = Pt r
2 sin(θ)2; (39)

where we have introduced the notion of radial component Pr and tangential component
Pt , due to our general anisotropic asumption.
The (t, t) component of the field equations implies

dm

dr
= 4πr 2%. (40)

Determining the solution

We set the two degrees of freedom from the conditions

m(r) = 0, (41)

Pt(r) = 0; (42)

which obviously imply
%(r) = 0. (43)

This completely determines the geometry of the spacetime.

*
Only Pr is different from zero.
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An interesting solution of Einstein equations III

The metric depends on a minimum radius µ and an integration constant C .

The curvature shows a logarithmic singular behavior for r → µ.

For r →∞ the curvature tends to zero, but the spacetime is not asymptotically
flat[Mor87].

The energy-momentum tensor satisfies the strong energy condition[Wal84] but not
the dominant energy condition[Wal84]

The mass is zero; for any of the well behaved notions of quasi-local mass[Pen82].

The solution can be matched continuously to Minkowski spacetime for some large
radius r0.

The solution can easily be generalized to contain a constant monopole mass
contribution m0.

The solution can easily be generalized to contain a monopole mass contribution
m(r).

(FaMAF, UNC, CONICET) Gravitational lensing + solution FoF, IATE; April 11, 2011 23 / 32



An interesting solution of Einstein equations IV

Rotation curves
Although the mass is zero the geodesic motion is non trivial.

Figure: Rotation curves for NGC 3198 (red), a massless energy-momentum (green) and with a different µ and a small
monopole contribution (blue).
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An interesting solution of Einstein equations V

What would be the estimate of the Newtonian mass function
for this zero mass solution?

Figure: Newtonian calculation of the mass function mN (r), for the original µ and for µ/4.
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An interesting solution of Einstein equations VI

Gravitational lensing

Since the spacetime is not asymptotically flat it is necessary to match
the solution with an asymptotic metric.

Preliminary results indicate that the possibility of using the thin lens
approximation might depend on the impact parameter of the beam
considered.

Even in the thin lens approximation the integrations must be
calculated with numerical techniques.

It might be necessary, for astrophysical applications, to also match
the solution in the interior region.
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Final comments I

We have presented explicit expressions for the bending angle and optical scalars in
terms of all the components of the energy-momentum tensor for a variety of cases.

The incidence of the spacelike components of the energy-momentum tensor is not

trivial. However:

M Many articles on gravitational lensing, like references Kubo[JAJ+07]
and Gavazzi[G+09] mentioned above, use the simplified equations from
text books.

M The NFW profile is calculated from a Newtonian model for dark
matter; which implies from the beginning negligible spacelike
components of the energy-momentum tensor.

The zero mass solution presented shows interesting properties found in
astrophysical systems where dark matter is needed.

~
It might be that the description of dark matter needs for the consideration of the
spacelike components of the energy-momentum tensor.
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Final comments II

Figure: Are we looking for the keys at the right place?
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