The origin of Disks and Spheroids in simulated galaxies

David Algorry Instituto de Astronomía Teórica y Experimental (IATE)

Ismael Ferrero IATE

Alejandro Benitez Llambay IATE

David Algorry IATE

Laura Sales MPA, Germany

Mario Abadi IATE

Julio Navarro UVIC, Canada

Simulations:

Galaxies-Intergalactic Medium Interaction Calculation (GIMIC; Crain et al. 2009)

Redshift z=1.5

Crain et al. 2009

Milennium simulations L=500 h⁻¹ Mpc

1 of 5 regions $L \sim 50 h^{-1} Mpc$

GIMIC galaxy $L \sim 50 h^{-1} kpc$

GADGET3 code

Cosmological parameters $\Omega_m = 0.25$, $\Omega_{\Lambda} = 0.75$, $\Omega_b = 0.045$, $n_s = 1$, $\sigma_8 = 0.9$, h = 0.73. $m_{gas} = 1.45 \times 10^6 h^{-1} M_s$ $M_{drk} = 6.6 \times 10^6 h^{-1} M_s$

Simulations:

Galaxies-Intergalactic Medium Interaction Calculation (GIMIC; Crain et al. 2009)

Redshift z=1.5

Crain et al. 2009

Region	$[h^{-1}{\rm Mpc}]$	$\stackrel{\rm y}{_{[h^{-1}{\rm Mpc}]}}$	$[h^{-1}{\rm Mpc}]$	Comoving radius $[h^{-1}Mpc]$	N (int. res)	N (high res)
-2σ	153.17	347.90 316.48	424.81	18	2.23×10^7 2.80×10^7	1.78×10^8 2.24×10^8
-10 0σ	271.94	108.29	107.45	18	3.44×10^{7}	2.24×10^{10} 2.75×10^{8}
$^{+1\sigma}_{+2\sigma}$	179.51 233.10	379.22 139.30	196.64 387.38	18 25	4.30×10^{7} 1.24×10^{8}	3.44×10^8 N/A

Crain et al. 2009

Region	$[h^{-1}{\rm Mpc}]$	$\stackrel{\rm y}{_{[h^{-1}{\rm Mpc}]}}$	$[h^{-1}{\rm Mpc}]$	Comoving radius $[h^{-1}Mpc]$	N (int. res)	N (high res)
-2σ -1σ 0σ	153.17 387.91 271.94	347.90 316.48 108.29	424.81 113.46 107.45	18 18 18	2.23×10^{7} 2.80×10^{7} 3.44×10^{7} 4.20×10^{7}	1.78×10^{8} 2.24×10^{8} 2.75×10^{8} 2.44×10^{8}
$+1\sigma$ $+2\sigma$	233.10	139.30	387.38	25	4.30×10^{6} 1.24×10^{8}	3.44 × 10° N/A

Motivation for GIMIC:

- include (very) large-scale structure
- good numerical resolution yet able to reach redshift z=0
- formation of unusual objects (massive cluster, deep void)
- estimate statistical properties

Objectives:

Galaxy properties and environment
IGM properties and environment
Interaction galaxies/IGM

Too many galaxies of very low mass Too many galaxies of very high mass And not enough galaxies of intermerdiate mass

Stellar Mass function

Sample

$$0.5 < M_{200}/10^{12} h^{-1} M_{\odot} < 1.5 (z=0)$$

62 halos

Tom Theuns

3

Simulated galaxy morfology

Fraction of kinetic energy invested in ordered rotation

 $\kappa_{\rm rot} = \frac{K_{\rm rot}}{K} = \frac{1}{K} \sum \frac{1}{2} m \left(\frac{j_z}{R}\right)^2.$ $\kappa_{\rm rot} = \square \qquad \text{disk with perfect circular motion}$ $\kappa_{\rm rot} = 0 \qquad \square \qquad \text{non-rotating system}$ $\kappa_{\rm rot} < 0.5 \qquad \square \qquad \text{spheroid-dominated}$

 $\kappa_{rot} > 0.7$ disk-dominated

 κ_{rot} evolution

Ismael Ferrero

 κ_{rot} (z=2)

Spheroids galaxies (κ_{rot} <0.5) can form by acretion of gas with different alignent of angular momentum or by a major merger event.

 $r_{rot} = 0.316$

Redshift z=0

Spheroids galaxies ($\kappa_{rot} < 0.5$) can form by acretion of gas with diferent aligment of angular momentum or by a major merger event.

 $\kappa_{rot} = 0.316$

Muchas Gracias

MI

