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Introduction: I

There is more than one way in which one can approach the notion of a particle in
general relativity. We mention here two different approaches.

From the notion of isolated systems; through the study of asymptotically flat
spacetimes. Suppose one has the expressions for the general isolated systems in
terms of a null frame and some luminosity distance; then neglecting any
appearance of quadratic terms in the curvature, one will end up with the most
general linearized solution of a compact object with structure. Then one can apply
some notion of no-structure, to define a particle.

Through the study of local solutions, applied to distributions with support on a
timelike world line. The corresponding energy-momentum tensor should only take
into account mass and spin aspect of the particle.
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Introduction: Particles as isolated objects I

Particles as isolated objects
When considering a compact object as isolated, in the framework of isolated spacetimes,
one realizes that in general one can ascribe a flat background to the spacetime.
More concretely, in the asymptotic region one can always write the metric as

gab = ηab + hab; (1)

where ηab is a flat metric and hab the tensor where all the physical information is
encoded. But:

There are as many flat metrics as there are proper BMS[Sac62, Mor86] supertranslation
generators.

The difficulties in finding appropriate rest frames comes from the existence of
gravitational radiation[Mor88, MD98, DM00].

In the past we have found a way to select rest frames based on the notion of
center of mass and intrinsic angular momentum[Mor04].
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Introduction: Particles as isolated objects II

For each point at future null infinity, we have[Mor04] a way to single out a unique
decomposition of the metric in the form (1), with an appropriately selected flat
background.

It is for this reason that gravitational radiation should be the first quantity to be taken
into account for the discussion of back reaction on the motion of compact objects.

Therefore in calculating the appropriate equations of motion for particles we take
this as our starting point; so that the root of the difficulties is taken care at the
beginning of our approach.

The structure of the particle is then deduced from the asymptotic structure of
isolated systems; namely, asymptotically flat spacetimes.

This invites to treat the spacetime in terms of a null tetrad adapted to the
discussion. We will make use of this later.
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Introduction: Particles as point like objects in special relativity I

Particles as point like objects in special relativity
The notion of a point like object in a fixed background is normally presented through an
energy momentum tensor which has support only on a timelike world line.
The first case one should understand if of course the flat background case.

Figure: Small world tube around the world line.
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Introduction: Particles as point like objects in special relativity II

Consider first the case in which one is considering a distribution of matter that has
support within a world tube of finite size. Later we will take the limit in which the
tube collapses to a timelike line.

Having a flat background we have at our disposal the translational Killing vectors
Ka = ∂

∂xa
, with a = 0, 1, 2, 3,

and also the rotational Killing vectors Kab(ξ) = ηac(xc − ξc) ∂
∂xb
− ηbc(xc − ξc) ∂

∂xa
.

The matter is represented by the energy-momentum tensor Tab. Note that we are
using the notation a, b, c for abstract indices while underlined indices are numeric.
Then, at zero order, the energy-momentum tensor satisfies:

∇ · T = 0 . (2)

O. M. (FaMAF, UNC, CONICET) Modeling compact objects Fof 2013 8 / 69



Introduction: Particles as point like objects in special relativity III

Let K a denote any of the Killing symmetries, then, as explained elsewhere[GM12], for
each symmetry one has a conserved quantity. Namely, let us define the three form

Dabc = T d
e K

eεabcd ; (3)

then its exterior derivative is dDabcd = k∇f

(
T f

e K
e
)
εabcd , where k is a constant. This

exterior derivative vanishes due to the fact that the divergence of T is zero and K is a
Killing symmetry. Then if Σ is a three dimensional region, such that the world tube goes
through its interior, the quantity

Q =

∫
Σ

D; (4)

is conserved.
For this reason one defines Pa by

Pa =

∫
Σ

Da; (5)

as the components of the conserved total momentum, and also

Jab(ξ) =

∫
Σ

Dab(ξ); (6)

as the components of the conserved total angular momentum.
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Introduction: Particles as point like objects in special relativity IV

Let us observe that

Jab(ξ2)− Jab(ξ1) = ηac(ξ
c
1 − ξ

c
2 ) Pb − ηbc(ξ

c
1 − ξ

c
2 ) Pa; (7)

or in other words

Jab(ξ2) = Jab(ξ1) + (ξ
a
1 − ξ

a
2) Pb − (ξ

b
1 − ξ

b
2 ) Pa. (8)

Let us emphasize again that Jab(ξ) is conserved for any ξ.
But one can consider, for example ξ1(τ1) as a timelike world line with proper time τ1.
Therefore, calling µ a

1 = ∇ξ1ξ
a
1 one has

∇ξ1J
ab(ξ1) = µ

b
1 Pa − µ a

1 Pb. (9)

Note that if one chooses µ1 to be parallel to P, then

∇ξ1J
ab(ξ1) = 0. (10)

Also, let us note that fixing ξ2, one has

Jab(ξ1)Pb = Jab(ξ2)Pb − (ξ
a
1 − ξ

a
2) P2 + (ξ

b
1 − ξ

b
2 )Pb Pa; (11)
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Introduction: Particles as point like objects in special relativity V

so that one can always pick a ξ
a
1 so that

Jab(ξ1)Pb = 0 . (12)

Using the frame in which P only has its timelike component, with all its spacelike
components equal to zero; i.e., P i = 0 with i = 1, 2, 3; one has∫

Σ

(x i − ξi1)P0εΣ =

∫
Σ

(x0 − ξ0
1)P iεΣ = 0; (13)

so that

ξicm =
1

M

∫
Σ

x iT 00εΣ; (14)

where now Σ is an adapted hypersurface x0 =constant, εΣ is the volume element, and
we have used P0 = M. For this reason we call such a point a center of mass. Then all
other points that are translated parallel to P are also center of mass points; which
means that the center of mass world line has velocity µ = P

M
.
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Introduction: Particles as point like objects in special relativity VI

Now, let us consider the case in which the world tube gets smaller until it collapses to
the timelike world line z . In this case x i is compelled to be evaluated at the world line;
and since P0 = M, one has that the center of mass ξ

i
cm is at the world line z . Also this

analysis indicates that the velocity of the center of mass ua is parallel to the momentum
Pa; so that, one has

Pa = Mua . (15)
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Introduction: The case of a single spherically symmetric object in general

relativity I

The case of a single spherically symmetric object in general relativity
The curious thing in general relativity is that if one starts from an object and compress
it in order to obtain a point like object, one ends up with the formation of a black hole;
whose size is different from zero.
The most simple black hole is the one represented by Schwarzschild spacetime with
metric gab. This is one of the spacetimes that can be decomposed in the so called
Kerr-Schild form; which means that the metric gab can be expressed in terms of a unique
flat metric ηab and a generator of future directed null geodesics `a, such that

gab = ηab −
2Gm

c2r
`a`b. (16)

Therefore, given the interior manifold M one has at ones disposal two metrics. The
spacetimes diagrams with respect to both metrics are depicted in figure 2.
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Introduction: The case of a single spherically symmetric object in general

relativity II

r=0
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r=2m
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+

r=0

−

Figure: On the left Schwarzschild metric from the point of view of the Kruskal analytical
extension, and on the right the spacetime diagram from the point of view of the flat reference
metric. Singularities are drawn with thick lines.

Therefore, although from the point of view of the Schwarzschild metric, the black hole
has a size, from the point of view of the reference metric it is a point like object.
In astrophysical situations the observer is situated in the asymptotic region of such
metrics, so that it is legitimate for him to talk about a point like object.
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Introduction: On the nature of other previous approaches I

On the nature of other previous approaches

Probably one of the first works that tackled de problem of motion of compact
objects was that of Einstein-Infeld-Hoffmann[EIH38](See critics in [HG62]). They
assumed small velocities and weak fields.

For a resent review on the problem of motion one can read [PPV11]. They
comment on the work of Gralla-Harte-Wald[GHW09], and said that they have
made a rigorous derivation of the equations of motion of charged particles.

It is interesting to note here that later we have been able to derive the most
general equation of motion for charged particles in [GM12].

Figure: Our article on the motion of charged particles.
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Introduction: On the nature of other previous approaches II

While the first authors have use local information on the particles we have use in
our work global information, that takes into account the radiation at infinity.

The situation is that our equations contain as particular cases the equations of
other authors.

The main idea in our approach is to consider the balance of variation of momentum due
to the emission of radiation.
Let S be a sphere at future null infinity defined as the asymptotic sphere of the future
null cone of a point Q(τ); and let Σ be the future null cone of this point.
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Introduction: On the nature of other previous approaches III

Σ
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Σ

Σ
+

~
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~

Figure: Two hypersurfaces reaching future null infinity.
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Introduction: On the nature of other previous approaches IV

In developing their ideas in the realm of general relativity, they use their approach
to the charged particles case, and we use ours. Therefore, we expect to obtain
different resulting equations of motion.

The application of the Gralla-Harte-Wald approach of charged particles to general
relativity gives the equations that are known as the MiSaTaQuWa equations.

In relation to this it is interesting to note that in the review article [PPV11] one
can read: “The MiSaTaQuWa equations of motion are not gauge invariant and
they cannot by themselves produce a meaningful answer to a well-posed physical
question; to obtain such answers it is necessary to combine the equations of
motion with the metric perturbation hαβ so as to form gauge-invariant quantities
that will correspond to direct observables.”

O. M. (FaMAF, UNC, CONICET) Modeling compact objects Fof 2013 18 / 69



Introduction: Motivation for so much work on the motion of ‘particles’ in

general relativity I

Motivation for so much work on the motion of ‘particles’ in general
relativity
Today there are several interferometric gravitational wave observatories constructed in
the world and they are supposed to detect gravitational radiation in the near future.
The study of the observed data[A+09, A+10, A+11] use:

Time coincidence to identify possible gravitational waves.

Template banks generated from post-Newtonian (PN) calculations extended to the
Schwarzschild inner most stable circular orbits.

Calculations from numerical relativity (NR) of waveforms in the late inspiral and
merger of binary black holes systems.

However: “it is infeasible to use the NR simulations directly as search
templates”[A+11].

Therefore they[A+11] use “phenomenological waveforms”.
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Introduction: Motivation for so much work on the motion of ‘particles’ in

general relativity II

� The previous situation motivates the study for extending the particle paradigm to
the relativistic regime, in which the gravitational radiation effects are taken into
account.

Several related questions arise:

what is the convenient structure that one should assume for the corresponding
particle?

how should one determine the corresponding equation of motion?

We here present a different approach to the particle paradigm, where no restriction on
the weakness of the sources are imposed, nor slow motion is assumed. In particular we
present a closed model for the binary system in general relativity.

O. M. (FaMAF, UNC, CONICET) Modeling compact objects Fof 2013 20 / 69



Content

1 Introduction
Particles as isolated objects
Particles as point like objects in special relativity
The case of a single spherically symmetric object in general relativity
On the nature of other previous approaches
Motivation for so much work on the motion of ‘particles’ in general relativity

2 Previous approaches to the notion of particles by other authors
Post-Newtonian approaches
Methods of self-force

3 Our previous approach based on the harmonic gauge
The decomposition of the metric
Auxiliary functions or gauge vector
The field equations in relaxed covariant form
Iterative approximation method
The gravitational field from one particle in the first iteration

4 Particle model in the null gauge
Linearized gravity
General asymptotically flat spacetimes
Monopole particles and Robinson-Trautman geometries
Properties of the particle model in the null gauge
Numeric implementation

5 Final comments

O. M. (FaMAF, UNC, CONICET) Modeling compact objects Fof 2013 21 / 69



Introduction: Previous approaches to the notion of particles by other authors

Post-Newtonian approaches I

Post-Newtonian approaches
It is very natural to consider as a first approximation to the problem of particles, or
compact objects, the situation in which fields are weak and velocities involved are small.
These are the main assumptions of the Post-Newtonian approximations. All quantities
are considered as order of powers O(( v

c
)q). In general one talks about an n PN order,

when the power involved is q = 2n.
In addition to expand the field equations using these approximations, one can also
expand the equations of motion, that arise as integrability conditions of the field
equations. In this case one also makes use of an n PN expansion. However, it has been
pointed out[Sch09] that in general one can not expand the solutions of the field
equations using the later.
In these approaches, the effects of gravitational radiation appear at the O( 1

c5 ) order. It
is for this reason that one can have a Lagrangian description of a particle system of

order O( v4

c4 ); since at this order, one would have conservation of energy, total
momentum and total angular momentum.
We reproduce here the equations of motion of reference [BFP98]
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Introduction: Previous approaches to the notion of particles by other authors

Post-Newtonian approaches II

dv i1

dt
=−

Gm2

r2
12

ni12 +
Gm2

r2
12c

2

{
v i12 [4(n12v1)− 3(n12v2)]

+ ni12

[
−v2

1 − 2v2
2 + 4(v1v2) +

3

2
(n12v2)2 + 5

Gm1

r12

+ 4
Gm2

r12

]}
+

Gm2

r2
12c

4
ni12

{[
−2v4

2 + 4v2
2 (v1v2)− 2(v1v2)2 +

3

2
v2

1 (n12v2)2 +
9

2
v2

2 (n12v2)2

−6(v1v2)(n12v2)2 −
15

8
(n12v2)4

]
+

Gm1

r12

[
−

15

4
v2

1 +
5

4
v2

2 −
5

2
(v1v2)

+
39

2
(n12v1)2 − 39(n12v1)(n12v2) +

17

2
(n12v2)2

]
+

Gm2

r12

[
4v2

2 − 8(v1v2) + 2(n12v1)2 − 4(n12v1)(n12v2)− 6(n12v2)2
]

+
G2

r2
12

[
−

57

4
m2

1 − 9m2
2 −

69

2
m1m2

]}

+
Gm2

r2
12c

4
v i12

{
v2

1 (n12v2) + 4v2
2 (n12v1)− 5v2

2 (n12v2)− 4(v1v2)(n12v1)

+ 4(v1v2)(n12v2)− 6(n12v1)(n12v2)2 +
9

2
(n12v2)3

+
Gm1

r12

[
−

63

4
(n12v1) +

55

4
(n12v2)

]
+

Gm2

r12

[−2(n12v1)− 2(n12v2)]

}

+
4G2m1m2

5c5r3
12

{
ni12(n12v12)

[
−6

Gm1

r12

+
52

3

Gm2

r12

+ 3v2
12

]

+ v i12

[
2
Gm1

r12

− 8
Gm2

r12

− v2
12

]}
+O(6) .

(17)
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Introduction: Previous approaches to the notion of particles by other authors

Post-Newtonian approaches III

Very often the equations appear in a complicated form, due to the fact that
accelerations appear on the right hand side. This forces to make some cleaning until one
has equations that can be used as in classical mechanics.
One can see that the dynamics assumes an absolute Newtonian time; so that the
retardation relativistic effects are not included in these descriptions.
The methods of Post-Newtonian approximations do not take into account the back
reaction to the equation of motion due to the gravitational radiation.
We will not discuss the so called method of effective field theory[GR06] since they are a
technique to calculate post-Newtonian terms.
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Introduction: Previous approaches to the notion of particles by other authors

Methods of self-force I

Methods of self-force
There is another approach which is associated to the notion of self-force. In this
approaches the idea is to consider first effects due to the perturbation that a particle
would produce in the background spacetime. For this reason it is assumed from the
beginning that the masses of the particles are small, in an appropriate sense. The metric
is assumed to be expressible in terms of

gab = gab + hab; (18)

where hab is a perturbation to the background metric gab; which is assumed to be a
solution of the field equations.

The dynamics of the particle can be deduced[Poi 6] from the geodesic equation of
the total metric.

This means that in this approach, one also neglects the effects due to the
gravitational radiation involving the motion of the particles.
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Introduction: Previous approaches to the notion of particles by other authors

Methods of self-force II

The perturbation hab is a solution of the linearized problem. In first instance the
equation of motion is given by

dua

dτ
=

1

2
(−gab + uaub)(2hbc;d − hcd ;b)ucud ; (19)

where τ is the proper time with respect to gab, and the covariant derivatives are also
with respect to the background metric.
This equation is singular, since one has to evaluate hab at the particle’s world line. The
method then recurs to a decomposition in terms of a singular and regular terms; so that
finally one arrives at the equations of motion

dua

dτ
=

1

2
(−gab + uaub)(2htail

bcd − htail
cdb)ucud ; (20)

where

htail
bcd = 4m

∫ τ−

∞
∇d

(
G+bcb′c′ −

1

2
gbcG

e
+e b′c′

)
ub′uc′ ; (21)

and G+bcb′c′ is the retarded Green function of the linear problem over the metric gab.
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Our previous approach based on the harmonic gauge I

The standard approach is to treat the field equations through the approximation based
on the relaxed covariant form of the field equations, as studied in [GM2b]. We start by
presenting a summary of its elements.
The decomposition of the metric
The metric is decomposed as the sum of a flat background plus the physical term, where
all the information is encoded.

gab = ηab + hab. (22)

Then the torsion free metric connection ∇a of the metric gab can be expressed it terms
of the torsion free metric connection ∂a of the metric ηab; so that of v is an arbitrary
vector one has

∇av
b = ∂av

b + Γ b
a cv

c ; (23)

and one can prove that

Γ c
a b =

1

2
g cd (∂ahbd + ∂bhad − ∂dhab) = Γ c

b a. (24)

The relation between Γ and the curvature tensor can be calculated from

[∇a,∇b]vd = Θ d
abc v c +

(
∂aΓ d

b c − ∂bΓ d
a c + Γ d

a e Γ e
b c − Γ d

b e Γ e
a c

)
v c

= R d
abc v c ;

(25)
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Our previous approach based on the harmonic gauge II

where Θ is the curvature of the ∂a connection. Then the Ricci tensor can be calculated
from

Rac ≡ R b
abc

= Θac + ∂aΓ b
b c − ∂bΓ b

a c + Γ b
a e Γ e

b c − Γ b
b e Γ e

a c ;
(26)

where Θac is the Ricci tensor of the connexion ∂a.
Auxiliary functions or gauge vector
Let us consider four independent auxiliary functions xµ, with µ = 0, 1, 2, 3. Then let us
observe that

g ab∇a∇bx
µ = g ab∇a∂bx

µ = g ab∂a∂bx
µ − g abΓ c

a b∂cx
µ. (27)

Then, if I e
µ denotes the inverse of ∂cx

µ, which exists by assumption of the independence
of the set xµ, one has

g abΓ c
a b = −

(
g ab∇a∇bx

µ − g ab∂a∂bx
µ
)
I c
µ = HµI c

µ ; (28)

where we are using
Hµ = −g ab∇a∇bx

µ + g ab∂a∂bx
µ. (29)
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Our previous approach based on the harmonic gauge III

Alternatively, let us define the gauge vector

H c = HµI c
µ ; (30)

which implies
Hµ = ∂cx

µ H c = H (xµ); (31)

then one has
g abΓ c

a b = H c . (32)

Then the Ricci tensor can be expressed by

Rac = Θac +
1

2
gbd (Θ e

bad hec + Θ e
bcd hea + 2Θ e

bca hed)

+
1

2
gbd∂b∂dhac − ∂(a

(
gc)eH

e)+ gedΓ e
a cH

d

− gbf gedΓ d
a f Γ e

b c −
1

2

(
Γ bd
a Γbcd + Γ bd

c Γbad

)
.

(33)
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Our previous approach based on the harmonic gauge IV

Given the vector field H c , we have seen that Hµ can be interpreted as H (xµ).
Therefore, one can think that the four auxiliary functions xµ are to be calculated from
the equation

− g ab∇a∇bx
µ + g ab∂a∂bx

µ = H (xµ). (34)

Alternatively one could think in given four independent functions xµ. Then calculate the
left hand side of (34), and look for a vector field H c so that (34) is satisfied.
The field equations in relaxed covariant form
The field equations are

Rac = −8πκ

(
Tac −

1

2
gacg

bdTbd

)
. (35)

In writing equation (33) in a coordinate frame, without any reference to η, one would
obtain the analogous expression without the Θ terms, and where all the appearance of ∂
derivatives are replace by coordinate derivatives.
Suppose that one solves (35) for a given vector field Hµ. Also assume that one can
solve for the functions xµ such that g ab∇a∇bx

µ = Hµ. Then, let build a flat metric η
so that g ab∂a∂bx

µ = 0; which in particular can be satisfied if the xµ’s are thought as
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Our previous approach based on the harmonic gauge V

Cartesian coordinates of η. In this way one would obtain HµI eµ = g abΓ e
a b, and so have a

solution of the field equations.
It also might be of interest to researchers in numerical relativity, since it provides the
possibility to use any coordinate system; i.e., not necessarily an harmonic one.
Alternatively one can use the form of the field equations in terms of a slight different
logic.
If we use the expression of the Ricci tensor as given by (33) in (35), namely

1

2
gbd∂b∂dhac − ∂(a

(
gc)eH

e)+ gedΓ d
a cH

e

+ Θac +
1

2
gbd (Θ e

bad hec + Θ e
bcd hea + 2Θ e

bca hed)

− gbf gedΓ d
a f Γ e

b c −
1

2

(
Γ bd
a Γbcd + Γ bd

c Γbad

)
=− 8πκ

(
Tac −

1

2
gacg

bdTbd

)
;

(36)

we will refer to this as the relaxed field equations[WW80], where one has not assumed
that H c is g abΓ c

a b.
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Our previous approach based on the harmonic gauge VI

Using the standard harmonic gauge technique, one would say: solve the relaxed field
equation in the coordinate frame, with Hµ = 0, and then require the equation

gbd∇b∇dx
µ = 0. (37)

In the standard approach one makes use of coordinate basis; therefore the previous
statement would be the complete story. At this point it is important to notice that if we
have the solutions xµ from (37) then, on constructing η with this as a Cartesian
coordinate system, one would obtain Hµ = 0.

Several authors have indicated that actually to request equation (37) is
equivalent[EIH38, And73, WW80] to demand

g ab∇aTbc = 0. (38)

When dealing with Einstein equations in the relaxed form, and treating the vacuum
case, equation (38) is understood as the condition that the divergence of the Einstein
tensor must be zero (which of course is identically zero in the non relaxed form).
In reference [GM2b] we have related this approach to the results of Friedrich[Fri85]
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Our previous approach based on the harmonic gauge VII

Iterative approximation method
The idea is to express (35) and eventually (37) in the form

ϕ ηab∂a∂bf = S(f ); (39)

where ϕ ηab is the term proportional to ηab that is contained in g ab. This equation can
also be expressed by

ηab∂a∂b(ϕ f ) = s(ϕ f ) + S(f ); (40)

where
s(ϕ f ) ≡ ηab∂a∂b(ϕ f )− ϕ ηab∂a∂bf . (41)

Now one would like to solve equation (40) by iterations.
Let us define the sets f (j) such that for j = 0, one takes h = 0, xµ to be harmonic
functions of the metric η and ϕ = 1; and for j > 0, f (j) is the solution of

ηab∂a∂b(ϕ(j−1) f (j)) = s(ϕ(j−1) f (j−1)) + S(f (j−1)). (42)

using the retarded Green function.

O. M. (FaMAF, UNC, CONICET) Modeling compact objects Fof 2013 34 / 69



Our previous approach based on the harmonic gauge VIII

The gravitational field from one particle in the first iteration
Let us consider a massive point particle with mass mA describing, in a flat space-time
(M0, ηab), a curve C which in a Cartesian coordinate system xa reads

xµ = zµ(τ), (43)

with τ meaning the proper time of the particle along C .
The unit tangent vector to C , with respect to the flat background metric is

uµ =
dzµ

dτ
, (44)

that is, η(u, u) = 1. Now, for each point Q = z(τ) of C , we draw a future null cone CQ

with vertex in Q. If we call xµP the Minkowskian coordinates of an arbitrary point on the
cone CQ , then we can define the retarded radial distance on the null cone by

r = uµ (xµP − zµ(τ)) . (45)

The energy momentum tensor T
(0)
ab of a point particle is proportional to mvavb; where m

is the mass and v a its four velocity. We are distinguishing between the unite tangent
vector ua and the four velocity vector v a, because we would like to consider the
possibility to normalize the vector v with respect to a different metric. In order to
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Our previous approach based on the harmonic gauge IX

represent a point particle T
(0)
ab must also be proportional to a three dimensional delta

function that has support on the world line of the particle.
We will suppose that the particle does not have multipolar structure. Then, given an
arbitrary Minkowskian frame (x0, x1, x2, x3), we will express the energy momentum by

T (0)ab(x0 = z0(τ0), x1, x2, x3) =mAv
a(τ0)vb(τ0)

δ(x1 − z1(τ0))δ(x2 − z2(τ0))δ(x3 − z3(τ0))

u0(τ0)
;

(46)

however see below, since after considering the equations of motion we will update this
form of the energy-momentum tensor to include corrections of order O(mB). This will in
turn imply an update of the first order solution to the field equations. In this way the
first order solution will imply at least second order terms in the masses, and therefore in
the gravitational constant G .
The form of the differential equation comes from the study of the distribution in a small
world tube surrounding the world line of the particle.
Then the solution to the linear problem is

h
(1)
ab = −4mA

vavb − 1
2
ηab

r
; (47)
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Our previous approach based on the harmonic gauge X

so that in general

g
(1)
ab =

(
1 +

2mA

r

)
ηab −

4mA

r
vavb. (48)

In these equations we have considered the definition

va ≡ ηabvb; (49)

however it should be emphasized that the vector vb is not normalized with the flat
metric η as we will see below.
The inverse of this metric is

g (1)ab =
1

1 + 2mA
r

ηab +
4mA
r

1−
(

2mA
r

)2 v
avb. (50)

The balanced equations of motion are:

dP(A)

dτA

a

= − 1

G
Fb
τA (δab − vAbv

a
A) , (51)
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Our previous approach based on the harmonic gauge XI

and
dP(B)

dτB

a

= − 1

G
Fb
τB (δab − vBbv

a
B) , (52)

where Fa
τA is the flux of gravitational radiation, δab is the identity tensor and we have

introduced the G factor to emphasize the difference between the local momentum P(A)

and the global Bondi momentum PA. Note that due to the nature of the momentum
vector, any correction to the zero order equation of motion must be orthogonal to the
four velocity.
How does these equations affect the balance of total Bondi momentum? For a system in
which slow motion is a good approximation, one can expect that G Pa

(A) ≈ Pa
A; from

which one would conclude that the model satisfies the balance equation at the center of
mass at the order (p = 2, q = 2) in the slow motion limit case.
This approach have several encouraging properties; for example:

It presents no difficulties in an expansion of the field equation in an approximation
scheme.

It allows to deal with objects of high velocities.

It allows to discuss objects with arbitrary masses.
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Our previous approach based on the harmonic gauge XII

It satisfies the balanced equation of motion for each particle.

However, let us note that

g
(1)
ab v avb =

(
1− 2mA

r

)
ηabv

avb; (53)

is a scalar and vanishes at r = 2mA.
So, we have started with a vector v a that was assumed to be timelike with respect to
the flat background metric ηab; but, the vector field that comes from the first order
solution, turns out to be null at some points, with respect to the first order metric g

(1)
ab .

This constitutes a complication for the physical interpretation of the ideology that the
zero order equations of motion should be corrected by the balance of the gravitational
energy radiated. Since one imagines that there should be a null hypersurface emanating
from the position of the particle, reaching future null infinity, and therefore providing
with a connection between the local behavior and the asymptotic properties of the
radiation field. But, then one would find the the vector field v a, would become null as
one gets close to the particle; which is difficult to interpret.
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Particle model in the null gauge I

The seeds in this method are solutions to the linear problem of particles but in the null
gauge; so that we start by viewing how to make the calculation of the spacetime
associated to a particle.
Linearized gravity
Let us denote with u a null function that is constant on the future null cones, emanating
from the particle at first order.
Using the null polar coordinate system (x0, x1, x2, x3) =

(
u, r , (ζ + ζ), 1

i
(ζ − ζ)

)
one can

express the null tetrad as:
`a = (du)a (54)

`a =

(
∂

∂ r

)a

(55)

ma = ξi
(
∂

∂x i

)a

(56)

ma = ξ
i
(
∂

∂x i

)a

(57)

na =

(
∂

∂ u

)a

+ U

(
∂

∂ r

)a

+ X i

(
∂

∂ x i

)a

(58)
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Particle model in the null gauge II

with i = 2, 3.
This is a null tetrad so that

gab `
a nb = 1, (59)

and
gab ma m̄b = −1; (60)

and all other scalar products are zero.
Since the metric can be expressed by

gab = `a nb + na `b −ma mb −ma mb; (61)

one has the relations

gur = 1, (62)

grr = 0, (63)

gri = 0, (64)

guu = −2U + X iX jgij , (65)

gui = −gijX j , (66)

gij = (g ij)−1 = −dεikεjl(ξk ξ̄l + ξ̄kξl); (67)
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Particle model in the null gauge III

with i , j , k, l = 2, 3, d = det(gij), εij = −εji and ε23 = 1. In particular, defining the
quantity

λ = εijξ
i ξ̄j ; (68)

one has that

d =
1

|λ|2 . (69)

The inverse metric is given by

guu = 0, (70)

gur = 1, (71)

gui = 0, (72)

g rr = 2U, (73)

g ri = X i , (74)

g ij = −(ξi ξ̄j + ξ̄iξj). (75)
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Particle model in the null gauge IV

Let us use the parameter γ to denote the order of the gravitational constant. Then, the
fact that gab(γ = 0) is the flat metric implies that the linear null tetrad components
have the form

U = U0 + γUγ , U0 =
V̇M

VM
r − 1

2
, (76)

ξ2 =

√
2P0VM(1 + γVγ)

r
, (77)

X j = O(γ); (78)

where a dot means ∂/∂u, P0 = (1 + ζζ̄)/2, and VM is given by the following expression

VM = l̂aV bηab, (79)

where (ηµν) = diag(1,−1,−1− 1), V µ = V µ(u) is a four timelike vector in Minkowski
space-time, which depends only on u and satisfies the normalization

V aV bηab = 1,

and the null vector l̂a is given by

(̂lν) =

(
1,

ζ + ζ̄

1 + ζζ̄
,

ζ − ζ̄
i(1 + ζζ̄)

,
ζζ̄ − 1

1 + ζζ̄

)
. (80)
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Particle model in the null gauge V

We distinguish between the abstract indices a, b, · · · and the numeric indices
µ, ν, · · · = 0, 1, 2, 3.
The relation between these null coordinates and the Cartesian ones yµ is the following

yµ = ϕµ(u) + r`µ(u, x2, x3),

where ϕµ(u) is a world line with unit tangent vector V µ

V µ =
dϕµ(u)

du
,

and the Cartesian components of the vector l are

`µ =
l̂µ

VM
.

The vector field `a generates the future null geodesics with origin at points of the world
line ϕµ; note that we are taking the variable u as the proper time of this world line.
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Particle model in the null gauge VI

It is convenient to study the vacuum equations ordered by the components of the Ricci
tensor in terms of the vector field `a, i.e. in the following order: Φ00 = 0, Φ01 = 0,
Φ11 = 0, Λ = 0, Φ02 = 0, Φ12 = 0 and Φ22 = 0 (we make use of the spin coefficient
formalism [GHP73]).

General asymptotically flat spacetimes
Let now u denote a null hypersurface that contains future directed null geodesics that
reach future null infinity. Then we can use the same null tetrad prescription, that we
used before, but now adapted to this null congruence.
The components ξi , U and X i are:

ξ2 =
ξ2

0

r
+ O

(
1

r 2

)
, ξ3 =

ξ3
0

r
+ O

(
1

r 2

)
, (81)

with
ξ2

0 =
√

2P0 V , ξ3
0 = −iξ2

0 , (82)

where V = V (u, ζ, ζ̄) and the square of P0 = (1+ζζ̄)
2

is the conformal factor of the unit
sphere;

U = rU00 + U0 +
U1

r
+ O

(
1

r 2

)
, (83)
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Particle model in the null gauge VII

where

U00 =
V̇

V
, U0 = −1

2
KV , U1 = −Ψ0

2 + Ψ
0
2

2
, (84)

where KV is the curvature of the 2-metric

dS2 =
1

V 2 P2
0

dζ d ζ̄; (85)

where the regular conformal metric restricted to scri is precisely g̃ |I+ = −dS2. In terms
of the edth operator ðV of the sphere (85) the curvature KV is given by

KV =
2

V
ðVðV V − 2

V 2
ðVV ðVV + V 2. (86)

Finally, the other components of the vector na have the asymptotic form

X 2 = O

(
1

r 2

)
, X 3 = O

(
1

r 2

)
. (87)

One can see that the previous expressions can be consider as a subset of the present
equations; since the first is expressing an asymptotically flat spacetime.
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Particle model in the null gauge VIII

Monopole particles and Robinson-Trautman geometries

There is an interesting connection between the particular case of monopole
particles and the so called Robinson-Trautman geometries[DMG96]; which are
generalizations of Robinson-Trautman spacetimes.

Robinson-Trautman[RT62] spacetimes (RT) have been very useful for estimating the
total gravitational radiation in the head-on black hole collision[MD96][Mor99][AHS+93].
In reference [MD96] we have applied these geometries to the description of the total
energy radiated in the head-on black hole collision with equal mass; and it was shown
that our calculations agree remarkably well with the numerical exact calculations of
Anninos et.al.[AHS+93]. The case of unequal mass black hole collision, was treated
numerically in reference [AB98]; and our technique based on the use of the RT
geometries[Mor99] showed again an impressive agreement with the exact calculations. If
one wants to generalize these estimates to the case of the black hole collision with orbital
angular momentum it is necessary to consider spacetimes with total angular momentum.
The Robinson-Trautman vacuum solutions are algebraically special spacetimes which are
characterized by the existence of a congruence of diverging null geodesics without shear
and twist. This implies the existence of a prefered family of null hypersurfaces; which
provides a set of sections at future null infinity. The angular momentum calculated on
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Particle model in the null gauge IX

these sections is found to be zero. (In a Bondi frame the asymptotic NP quantities Ψ0
1

and σ0 are zero; as a consequence the angular momentum vanishes independently of the
definition used. See for example reference [Mor86] and references therein.)
The line element of these metrics can be expressed by:

ds2 =

(
−2Hr + K − 2

M(u)

r

)
du2 + 2 du dr − r 2

P2
dζ d ζ̄, (88)

where P = P(u, ζ, ζ̄), H = Ṗ
P

, K = ∆ lnP , a doted quantity denotes its time derivative,
a bar means complex conjugate and ∆ is the two-dimensional Laplacian for the
two-surfaces u = constant, r = constant with line element

dS2 =
1

P2
dζ d ζ̄; (85)

where we are using complex stereographic coordinates (ζ, ζ̄) for the sphere.
It is usually convenient to describe this line element in terms of the line element of the
unit sphere; this is done by expressing P as the product P = V (u, ζ, ζ̄)P0(ζ, ζ̄), where
P0 is the value of P for the unit sphere.
It is natural in case to use the null tetrad adapted to this geometry. So that ` denotes
the vector field that generates the null congruence, then ` = du, `(r) = 1, `(ζ) = 0 and
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Particle model in the null gauge X

`(ζ̄) = 0. It is convenient to use the parameterization u such that the mass parameter
M(u) = M0 = constant.
Then, the components ξi , U and X i are:

ξ0 = 0, ξ2 =
ξ2

0

r
, ξ3 =

ξ3
0

r
, (89)

with
ξ2

0 =
√

2P0 V , ξ3
0 = −iξ2

0 ; (90)

U = rU00 + U0 +
U1

r
, (91)

where

U00 =
V̇

V
, U0 = −1

2
KV , U1 = −Ψ0

2 + Ψ̄0
2

2
, (92)

where the curvature KV of the 2-metric appearing in equation (85), is given by

KV =
2

V
ð̄VðV V − 2

V 2
ðVV ð̄VV + V 2, (93)
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Particle model in the null gauge XI

the leading order behavior Ψ0
2 of the second component of the Weyl tensor is Ψ0

2 = −M0

and
X 0 = 1, X 2 = 0, X 3 = 0; (94)

and where ðV is the edth operator, in the GHP notation, of the sphere with metric (85).
The vacuum Einstein equation can be reduced to a parabolic equation for a scalar
depending on three variables, the so called Robinson-Trautman equation; which in our
notation has the form

−3M0 V̇ = V 4 ð2ð̄2 V − V 3 ð2V ð̄2V ; (95)

where ð is the edth operator of the unit sphere. We refer to a line element with V
satisfying this equation as a Robinson-Trautman solution. On the other hand, if the RT
equation is not required, then the solution is no longer vacuum and there is only one
component of the Ricci tensor different from zero, given by[DMG96]

Φ
(RT )
22 =

−3M0
V̇
V
− V 3 ð2ð̄2 V + V 2 ð2V ð̄2V

r 2
; (96)

where the (RT) is to emphasize the fact that in this case we are using the null tetrad
adapted to the null congruence. We refer to this as a Robinson-Trautman geometry.
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It is also very interesting to calculate[DMG96] the time variation of the total momentum
in these geometries. With respect to the instantaneous Bondi time one has

dPα

duB
= − 1

4π

∫ (
∂σ0

∂uB

∂σ̄0

∂uB
− Φ0

22

)
ˆ̀αdS2; (97)

while the time derivative of the total momentum with respect to the
Robinson-Trautman time is

dPα

du
= − 1

4π

∫ (
ð2V ð̄2V

V
− Φ

(RT )0
22

V 3

)
ˆ̀αdS2. (98)

It is also convenient to recall the relations

∂σ0

∂uB
=

ð2V

V
, (99)

Φ0
22 =

Φ
(RT )0
22

V 4
, (100)

and
∂uB
∂u

= V . (101)
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When viewing monopole particles as Robinson-Trautman geometries the time parameter
u coincides with the proper time of the particle. Then, the balanced equation of motion
can be directly read from equation (97) or (98).

Using the proper time u, one sees that demanding that
Φ

(RT )0
22
V 3 has no l = 0 or l = 1

spherical harmonic components, provides the appropriate balanced equation of motion;
namely

dPα

du
= − 1

4π

∫
ð2V ð̄2V

V
ˆ̀αdS2 . (102)

This becomes a rather simple equation that is manageable from the point of view of a
numerical calculation.
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Particle model in the null gauge XIV

Properties of the particle model in the null gauge

In studying the particle model from the point of view of the Robinson-Trautman
geometries, we have found that the calculation of the equations of motion is direct.

However in this model, the representation of the spacetime geometry is a little
more involved. Although for the calculation of the dynamics, one does not need
the complete knowledge of the spacetime geometry.

In a sense these are the opposite qualities from the previous model based on the
harmonic gauge.

Nevertheless we should remark, that the null gauge for a particle, on a flat
background, provides with a direct connection between the local fields and the
concept of gravitational radiation. More concretely, we have found that the
balanced equation of motion is obtained from the equations∫

Φ
(RT )0
22

V 3
ˆ̀αdS2 = 0 . (103)

This equation can then be demanded for the general case of a non-flat background,
as precisely the condition that is needed for the balanced equations of motion.
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Numeric implementation
The numeric implementation for this method of approximation involves the need to
solve two equations of motion for the particles that depend on the retarded data. That
is we deal with two dynamical times, for the binary system; as opposed to the absolute
Newtonian time of post-Newtonian approaches.
To solve a dynamical system taking into account retarded data effects, is already a
challenge. We have not found literature on previous work on this field.
To develop the code we have first tackled the toy problem of two particles that interact
through Newtonian retarded forces, with relativistic initial conditions.
We will present numerical calculations of our method of approximation in the near
future.
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Final comments I

When embarking on the construction of a model for compact objects within the
particle paradigm in general relativity, it is natural to recur to approximation
schemes in terms of some order parameter. One knows from the start that such
construction will have sense only if it is thought in terms of finite orders.

From the characteristics of our model we expect to improve on the range of
possible systems that we can study with respect to the ranges covered by the
post-Newtonian and the self-force techniques.
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Final comments II

Figure: Graph borrowed from Blanchet presentation.
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Final comments III

Figure: Graph borrowed from Blanchet presentation.
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Final comments IV

Figure: Graph borrowed from Blanchet presentation.
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Final comments V

Figure: Our model embraces both other models: so we depict here our expectations for the range of applicability of the
model.
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Final comments VI

We plan to improve on this model by making further corrections in terms of the
local structure of the field equations.

We will compare numeric calculations coming from our model with the other
approaches to the particle paradigm.

The main goal is to apply our model to a binary system.
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