

Evolution of the metallicity-mass relations from cosmological-SPH simulations of galaxy clusters and groups

Alessio D. Romeo

Collaborators

J. Sommer-Larsen (NBI Copenhagen) N.R. Napolitano (INAF Napoli) V. Antonuccio-Delogu (INAF Catania) I. Gavignaud (UNAB Santiago de Ch.) C. Tortora (Universitat Zurich) S. Cielo (MPI Heidelberg)

SIM & SAM

Simulations can give an answer to a major question: what are the physical ingredients which lead to the galaxies we observe today?

Observed

Simulated Universe

Semi-analytic models

Physics

- Merger trees can trace particles in time
- Rely on a set of assumptions and approximations
- Fast when the simulation parameters are changed
- High resolution DM only + synthesis colours (e.g.)

Hydrodynamic simulations

- Full hydrodynamic description of physical phenomena
- Fewer simplifying assumptions
- Restricted on smaller scales (namely, galactic) in order to maintain a high resolution

Cosmological & hydrodynamic simulation (by *rezooming*)

• The formation is followed *ab initio* within a wide cosmological volume => role of environment

- Lower resolution
- Allows to study the mutual cycle between inter-galactic medium, star formation and stellar feedback

Rezoomed cosmological simulations

Gas hydrodynamics

coupled "self-consistently" with the stellar component:

- radiative metal-dependent cooling
- star formation: Salpeter or Arimoto-Yoshii (top-heavier) IMF
- SN-II & Ia feedback

• stochastic chemical evolution: not-instantaneous recycling of H, He, C, N, O, Mg,

Si, S, Ca, Fe

Simulation setup

ACDM "standard model" N-body code (*Fly*, Catania): $\Omega_m = 0.3, \ \Omega_{\Lambda} = 0.7, \ h = 0.7, \ z_i = 40, \ f_b = 0.12$

TreeSPH (Lagrangian) hydro-dynamical code (Copenhagen)

mass resolution $m_{DM} = 18 (2.3) \times 10^8 h^{-1} M_{sun}$ $m_{SPH} = m_* = 2.5 (0.3) \times 10^8 h^{-1} M_{sun}$

• completeness limit: $M_V = -17 / -15$, $M_K = -20 / -17.5$

• softening length: 1.4-2.8 (stars) and 2.7-5.4 (DM) *h*⁻¹ kpc

Simulation targets

"Coma" : $1x10^{6}$ particles, $12.4x10^{14} M_{\Rightarrow}$, 6 keV "Virgo" : $3x10^{5} (2.2x10^{6})$ particles, $3x10^{14} M_{\Rightarrow}$, 3 keV 12 groups : $3x10^{5} (1.5x10^{6})$ particles, $1x10^{14} M_{\Rightarrow}$, 1.5 keV

Simulation models

Standard scheme (SW): 70% of energy feedback from SNII
 → continuous gal. super-winds

• Other runs: - weak feedback (only early starbursts);

- strong feedback (SWx2/x4: "AGN");

- "adiabatic" (no cooling/s.f.)

Optionals on top: - pre-heating at z=3 ≈1 keV, 50 keVcm²
 - thermal conduction

Simulation recipe

Top-heavy IMF (AY) + Strong feedback

(70% SN II \rightarrow galactic "super" winds)

reproduces ICM properties: L_X -T, S(r), f_{cold} , $Z_{Fe}(r)$, ICMLR

by removing low-S, over-X-ray emitting central gas

& spreading more efficiently metals up in the ICM

(Romeo et al. 2006)

but also => deficiency of bright (M*+2) galaxies

(Suggestion: no unique model for both gas and galaxies

solution: AGN feedback ?)

Simulating galaxy clusters – I. Thermal and chemical properties of the intracluster medium

A. D. Romeo, 1,2,3* J. Sommer-Larsen, 1,4* L. Portinari 1,5* and V. Antonuccio-Delogu $^{3}\star$

Simulating galaxy clusters – II. Global star formation histories and the galaxy populations

Alessio D. Romeo,^{1,2,3*} Laura Portinari^{1,4*} and Jesper Sommer-Larsen^{1,3,5*}

The evolution of the galaxy red sequence in simulated clusters and groups

RS

A. D. Romeo,^{1,2★} N. R. Napolitano,¹ G. Covone,^{1,3} J. Sommer-Larsen,^{4,5} V. Antonuccio-Delogu^{2,6}[†] and M. Capaccioli³

gradients

Stellar population gradients from cosmological simulations: dependence on mass and environment in local galaxies

C. Tortora^{1*}, A.D. Romeo², N.R. Napolitano³, V. Antonuccio-Delogu^{4,5}, A. Meza² J. Sommer-Larsen^{6,7}, M. Capaccioli 8,9

ZM (2013, accepted)

EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

A.D. Romeo Velonà¹, N.R. Napolitano², J. Sommer-Larsen^{5,6,7}, V. Antonuccio-Delogu³, S. Cielo⁴, I. Gavignaud¹, A. Meza¹

ICM

Galaxy LF

1) The ICM

z~1 : shock

z~0.5: virialization

SPH (gas) particles by temperature - "Coma" low resolution

1) The ICM

Same at 64x higher resolution

2) The galaxies

Star particles by formation redshift

3) The IC stars

CD envelope (by vel.disp.)

Metal-enrichment of ICM

Observational facts:

- Iron: Z_{Fe}~1/3 Z_{Fe,sun} decreasing radial profile:
- Steeper Z and T in "cold-core" clusters
- alpha elements (Si, O, Mg): supersolar abundance, increasing [α/Fe] radial profile: 80% from SNII
- Evolution: enrichment completed before $z \sim 1.2$

Metals in the ICM ...

Need more efficient metal enrichment of ICM

...and metals in stars

Metal partition between stars and ICM: large overall amount kept

However: consider IC stars as well !!

COLD FRACTION PROFILES

 $f_{\rm cold} = (M_* + M_{\rm coldgas})/M_b \approx (1 + M_{\rm ICM}/M_*)^{-1}$

Photometry of simulated galaxies

- > 1 "Star" = 1 SSP (same τ & Z) = 3x10⁸/4 x10⁷ M_☉ corrected for the returned fraction back into gas → L_{SSP}(age,Z):
 - $L = \int SF(t) \times L_{SSP} dt \rightarrow \text{multiband } U, B, V, R, I, J, H, K$

▶ Resolution limit: $M_V \le -17 / -15$, $M_K \le -20 / -17.5$

- BCG: 1) correction for excess of young central stars in the cold core (< 5 kpc)
- BCG: 2) correction for aperture effect (< 20 kpc)

Outline of results/diagnostics:

- 1. The LF
- 2. The Red Sequence
- 3. Mass-Metallicity relation
- 4. Luminous-to-faint ratio
- 5. Blue fraction
- 6. Cold gas fraction
- 7. Internal gradients (Z, age)

Stellar populations in Ellipticals

SDSS (Baldry et al. 2004)

$RS \rightarrow constrains epoch ($ *slope*) and duration (*scatter*) of star formation activity

DOWNSIZING

More massive ellipticals are the last to get assembled... but their stellar populations are the oldest !!!

Modelling the Red Sequence

The early-type CMR is a useful discriminant between the two competing theories of elliptical galaxy evolution:

1) Passive evolution/Monolithic collapse at high redshift:

tight, constant slope CM up to high z consistent with a synchronous starburst and then passive evolution = slow ageing & reddening (Kodama et al. 1998)

2) Dynamic evolution/Hierarchical merging :

RS slope flattens with *z* because more massive Ell. form from the (selective) mergers of more massive (metal rich) discs (Kauffmann & Charlot 1998)

The Red Sequence at z=0

Colour-Magnitude

(cfr. Bower et al. 1992, Terlevich et al. 2001)

fainter (=> metal-poorer

But Metallicity alone does not shape the RS as a peculiar locus in the CM plane

Two Sequences

• **Red Sequence**: early-type selection from σ_v – colour plane, with 2-sigma clipping (operative definition)

"Dead sequence" (DS): all and only the galaxies with "no" SF over the last Gyr
 --> redshift-dependent threshold in terms of sSFR

Star formation efficiency

• SFR = $\varepsilon M_{gas}^{\alpha=1}$ (Schmidt-Kennicutt) • sSFR= $\varepsilon f_{gas} \propto 1/\tau$ (time to form M_* at rate =SFR) If $\tau \ll t_H$ -> starburst galaxy sSFR decreases with mass: downsizing driven by s.f. efficiency (see Elbaz/Daddi+ 2007, Maiolino+ 2008)

SSFR as main driver of RS build-up

Since *z*~1, most of s.f. occurs in less massive galaxies (*downsizing* !)

and all star-forming galaxies lie below the RS fits

Cluster cores complete the RS first

CORE

OUT

"Transfusion" from blue cloud to red peak : Star formation moves towards less-massive galaxies

Environmental sequence in building the RS

• Normal groups: s.f. activity lasts down to *z*=0

NORMAL GROUPS

FOSSIL GROUPS

"Transfusion" from blue cloud to red peak :

Star formation moves towards less-massive galaxies (slower in groups)

The RS active to passive ratio

 $rac{}{\sim}$ z \approx 1 (clusters) \rightarrow 0.5 (groups) : transition epoch between active and quiescent regimes

Environment dependency of the transition redshift

14 Miles		$\alpha = \alpha_{DS}$	$N_{act} = N_{pas}$	N _{act} = 50% N _{pas}		
a water State of the water State of the water	cluster cores	0.9	1.1	0.85		
	cluster outskirts	0.7	1	0.8	redshi	
	Fossil Groups	0.4	0.6	0.4	ft	
	Normal Groups	0.2	0.4	0.3		

M > 2x10¹⁰M Environment dependency of the transition redshift

TANK AND A DAMA		$\alpha = \alpha_{DS}$	$N_{act} = N_{pas}$	N _{act} = 50% N _{pas}		
第一、日本のないという	cluster cores	0.9	1.1	0.85		Arnouts et a 2007
A STATE OF A	cluster outskirts	0.7	1	0.8	redshi	
	Fossil Groups	0.4	0.6	0.4	ft	
a state of the sta	Normal Groups	0.2	0.4	0.3		

transition redshift \Leftrightarrow epoch when RS approaches DS

RS and (cold) gas fraction

Cluster cores

Outskirts

Quenching of star formation due to lack of cold gas, especially in cluster cores

Physical scenario: the RS

SDSS sample of ETGs and LTGs

(Tortora et al. 2010, MNRAS, 407, 144)

Deductions from the RS

- Evolution of stellar populations in galaxies is mostly passive (age reddening) at least since z ~1, except from (dry) merging on to the BCG
- SSFR (more than Z or age) drives the RS evolution within the CM plane
- DS is the asymptotic, universal locus of "final rest" of galaxies once inactive
- Transition epoch at $z\sim1$ from active to passive regimes<-->slope change
- It does exist an environmental sequence in building the RS:
 - Cluster cores complete the RS first
 - •Normal groups: s.f. activity lasts longer
 - •FG: more quiescent, earlier assembled: "fossilness" (gap) widens at $z\sim0.7$

Needed proper model of AGN negative feedback at low z to quench cold cores

METALLICITY-MASS-(S)SFR RELATIONS

Metal production and chemical enrichment from SN FEEDBACK

Abundance ratios of elements with different timescales provide a clock of S.F.: Shorter S.F. duration => higher α -enhancement at least in a closed-box approx. (Chemo-archaeological downsizing)

Estimation of metallicities

1) Stellar lum./mass weighted Z_{*} from SSP synthesis models

 \rightarrow mainly for local Ell (f.ex. Thomas+ 2007, 2010)

2) Gaseous [O/H] from ISM nebular emission lines (f.ex. OIII) in HII regions of star-forming or gas-rich galaxies => skewed towards UV from young (OB) stars

Abundance indicators come from flux ratios of strong lines => problem of *calibration* (see talk by S.Cora)

The stellar Z-mass relation

Ellison+2009 (SDSS)
 Savaglio+2005
 Perez-Montero+2009
 Erb+2006 (z=2)
 Maiolino+2008
 Tissera+2005 (SIM NO FB!)
 Vale Asari+2009 (SAM)

Clusters Gr

Groups

Origin of the ZM relation

 Outflows more effective at enriching the ICM in less massive galaxies: Mass-selective inflows of pristine gas + outflows of enriched gas
 => lower galaxy Z by dilution => slope variation

 Gas reservoir exhausted in more massive galaxies => higher past conversion gas to stars => more metals produced

Mass-dependent IMF:

SFR-variable integrated IMF depending on the maximum mass of star clusters: higher SFR => more massive star clusters => more massive stars *in* clusters => more SNII (Koeppen, Weidner & Kroupa 2007)

Origin of the $[\alpha/Fe]$ -mass relation

Increasing trend from:

- SF efficiency as increasing function of M_{*} (Matteucci 1994)
- Mass-dependent IMF: top-heavier in more massive galaxies (Arrigoni+2010)
- AGN late quenching of S.F. (Calura & Menci 2011)

Pipino+2009: It is impossible to simultaneously reproduce both the ZM and $[\alpha/Fe]$ for massive EII, formed through a series of dry mergers (=>no changes in metals)

AGN feedback required to increase the slope of $[\alpha/Fe]$ -mass BUT at the same time => flat ZM ! Problem: excess of dwarf α -enhanced satellites.

The alpha/Fe – mass relation

The level of $[\alpha/Fe]$ at given mass decreases with time

Star formation history

Cluster denser environment --> earlier s.f. than field --> fast drop (z<1) (peak at $z\sim3-4$)

SFR and SSFR trends with mass

(Rodighiero+2010)

SFR and SSFR trends with mass

SFR ↑

SSFR ↓

(Daddi+2007, Elbaz+2007)

The SFR-stellar mass relation

>2

 \Diamond IN

 Δ

The SSFR-stellar mass relation

 $\log M_*$

A fundamental Z-M-SFR 3D surface (Maiolino-Mannucci 2010)

z=0

A fundamental Z-M-SFR 3D surface (Maiolino-Mannucci 2010)

No evolution up to z=2.5 !!

Z-SFR relation (Mannucci+2010)

Slope and scatter of the ZM relation in the DS

De Rossi+2007 Savaglio+2005 Vale Asari+2009

Slope and scatter of the ZM relation in the DS: ratio of massive to total

Slope and scatter of the ZM relation in the SF

Perez-Montero+2009 Erb+2006

Kewley & Ellison 2008 Savaglio+2005

Ratio between SF and DS

cluster cores
clusters out.
fossil groups
normal groups

The role of galactic super-winds

Starburst-driven asymmetric outflow at $z\sim3$: Hot gas particles gone with the wind are metal-richer than cold s.f. gas left behind and also than star particles.

Conclusions

>Tight sequence of SF galaxies in the SFR- M_* plane at high z: its scatter increases in time alongside to the opposite build up of the DS

- > Anti-correlation sSFR -M (downsizing)
- > Anti-correlation sSFR Z ,
- Correlation SFR Z *
- > sSFR as main driver of the ZM relation as tracer of the s.f. efficiency
- ZM slope in DS: higher in groups;
 - almost constant in time, but increasing with *z* for the more massive
- > ZM slope in SF: stronger evolution than in DS
- ZM scatter: almost constant in DS, increasing with z in SF
- \sim Feedback driven outflows/winds are a powerful means of reducing Z in the galaxy