

The Calar Alto Legacy Integral Field Area Survey

Caliphate of Córdoba (929 - 1031)

Introduction

Understanding the Universe

Sloan Digital Sky Survey

Mapping the Universe

- 2dFGRS (Folkes et al. 1999)
- SDSS (York et al. 2000)
- GEMS (Rix et al. 2004)
- VVDS (Le Fèvre et al. 2004)
- COSMOS (Scoville et al. 2007)

Introduction

Understanding the Universe

- ✓ Linked global quantities with properties of individual galaxies
 - √ (Morphological type, stellar masses, metallicities)
- Recent generation surveys:
 - ✓ large samples (statistical analysis, control samples, broad coverage of environment and types)
 - √ homogeneity of data adquisition, reduction and analysis

CALIFA precedents

✓ Imaging surveys:

COMBO-17, Alhambra, COSMOS

- ✓ 2D coverage but info in SEDs limited
- ✓ Better precision in redshift, mean ages, stellar masses

✓ Spectroscopic surveys: zCOSMOS, SDSS

- Detailed astrophysical information
- ✓ Limited to one spectrum per galaxy

Integral Field Spectroscopy

Integral Field Spectroscopy

- ✓ the importance and consequences of merging, major and minor
- ✓ internal dynamical processes, such as bars, spiral arms, stellar migration
- ✓ environmental effects, such as tidal forces, stripping
- ✓ AGN feedback
- ✓ occurrence, spatial and temporal extent and trigger of star formation.

Spatially resolved spectroscopic properties of a statistical sample of nearby galaxies

IFS precedents

- SAURON (Atlas 3D)
 - 72 (~200) E-type galaxies
 - z < 0.01
 - Limited FoV
- **PINGS**
 - 12 L-type galaxies
 - z < 0.01
 - Full optical size by mosaicing
- **VENGA: 30 Spirals**
- DiskMass: 30 Spirals
- VIXENS: 15 interacting galaxies

Blanc et al. 2013

IFS precedents

- ✓ PINGS (Rosales-Ortega et al. 2010)
 - √ 12 L-type galaxies
 - $\sqrt{z} < 0.01$
 - √ Full optical size by mosaicing

/ PINGS (Rosales-Ortega et al. 2010)

IFS precedents

- SAURON (Atlas 3D)
 - 72 (~200) E-type galaxies
 - z < 0.01
 - Limited FoV
- **PINGS**
 - 12 L-type galaxies
 - z < 0.01
 - Full optical size by mosaicing
- **VENGA: 30 Spirals**
- DiskMass: 30 Spirals
- VIXENS: 15 interacting galaxies

Blanc et al. 2013

CALIFA wants to fill the gap...

CALIFA in brief...

✓ Integral Field Spectroscopy Survey of galaxies in the Local Universe (Calar Alto 3.5m telescope, Spain)

CALIFA in brief...

- 250 dark nights in 5 years started July 2010
- √ ~ 2.5 Million Euros in telescope time
- ✓ Statistical and representative sample of ~600 galaxies
- Legacy character: reduced data delivered publicly

CALIFA collaboration

√ 90 members

√ 14 countries

√ 26 institutes

PI: Sebastián Sánchez (UNAM, Mexico)

Science drivers

- was a second
- ✓ Nearby galaxies as:
 - √ "Fossil records" of the formation and evolution of galaxies
- ✓ Which is the origin of the observed bimodality of galaxies?
- How galaxies evolve with time?

Secular evolution vs. interaction

✓ Interrelated properties: chemistry, kinematics of ionized gas, stellar populations, morphology, etc.

Science drivers

The mother sample

Walcher et al. 2014

- 600 galaxies were observed out of 939
 - ✓ Selected from SDSS DR7
 - √ Redshift range 0.005 < z < 0.03
 </p>

- ✓ Diameter 45" < R25 < 80" (isophotal radius at 25 mag/arcsec²)
- √ Final spatial resolution: 2" (~0.4-1 kpc)
- √ No type selection (full coverage of the CMD)

Methodology

✓ PPAK@3.5m CAHA

✓ PPAK:

PMAS (Postdam Multi-Aperture Spectrophotometer) fiber PAcK

- ✓ central hexagonal bundle of 331 optical fibres
- ✓ 2.7 arcsec/fibre
- ✓ Dithered observations

Methodology

- ✓ PPAK@3.5m CAHA
- ✓ Wavelength range: 3700-7000 Ang
- √ ~2000 spectra per object
- ✓ Two instrumental setups:
 - ✓ high (V1200), mid (V500) resolution

Methodology

Semi-Automatic reduction Pipeline

AUTOMATIC QUALITY CONTROLS

FIBERFLAT					
FITSFILE	MEAN	MEDIAN	STDDEV	MIN	MAX
fiberflat.20131212.fits	0.92	0.98	0.147	0.3	1.301

Semi-Automatic reduction Pipeline

- with the second
 - √ v1.2 (Perl/R3D, Sánchez et al 2012)
- √ v1.3c (DR1, Perl/Python/Py3D, Husemann et al 2013)
- √ v1.5 (DR2, García-Benito et al 2015)
- √ v2.2 (DR3, Sánchez et al., in prep.)

Quality Control

- Automatic QC performed by the reduction
- Detailed QC performed by an independent group

Analysis pipeline

Ancillary data

CALIFA DATA Releases

- ✓ DR1, 100 galaxies, 200 cubes. Oct. 2013, Husemann et al. 2013
- ✓ DR2, 200 galaxies, 400 cubes. Oct. 2014, Garcia-Benito et al. 2015
- ✓ DR3, ~650 galaxies, ~1200 cubes. Apr. 2016. Sanchez et al., in prep.

http://califa.caha.es/DR3

CALIFA Explorer

CALIFA EXPLORER V1.0

Tue, 11/22/2011 - 15:31

NAME (1)	1	RA	DEC CA		LIFAID	
IC5376	00:0	1119.77	+34:31:32.40	1		
BASIC PARAMETERS Name Redshift Petrosian Mags (u,g,r,i,z)		VALUE IC5376 0.016792			REF.	
					NED	
					SDSS	
		(16.4068	,14.4858 ,13.6274 ,13	3.1605 ,)	SDSS	
Galactic Extinc			(0.369168,0.27163,0.197009 SD			

CALIFA OBSERVATIONS

Flux 1	0-16 e	vg/k	/cm	/arcs	ec^
ATM 8.07				4.807	- 4.60

20110828 V1200 Cube

		vel	ocit	v ki	m/s		
-	-80	-84.7	414	au	463	165	

	ю	g(Ag	ie/G	Pyr)		
AM I	M 37	1.00	7,40	100	M.A	13.0

Flux 1	10-16	eng.	k/cm	/arcs	0012	
			0.871			

CALIFA Morphological Classification

PARAMETER	VALUE	PARAMETER	VALUE
hubble_type	8	hubble_subtype	ь
minimum_hubble_type	8	minimum_hubble_subtype	// •

10000 individual downloads

Publication statistics

CALIFA in NASA-ADS

Last update: March 2016

Direct links to ADS search	Number
Publications with the string "CALIFA" in the title ₺	93
Publications with the string "CALIFA" in the abstract ₪	121
Citations to the survey presentation article	218
Citations to the DR1 article (\$\varPhi^2)	68
Citations to the DR2 article (\$\vartheta^3)	31
Citation history the survey presentation article ₽	
Citation history of the DR1 article ₺	
Citation history of the DR2 article ☑	

- 1) Sánchez et al. 2012, A&A, 538
- Husemmann et al. 2013, A&A, 549
- García-Benito et al. 2015

4 PhD Thesis

17 (future) PhD Thesis

6 Master Thesis

7 (future) Master Thesis

1 Bachelor Thesis

Sales pitch!

Pérez et al. ApJL 2013

Galaxies with Mass > 10¹⁰ (Msun): grow inside-out

Singh et al. A&A 2013

✓ Are LINERS powered by a lowluminosity AGN?

LINER: (Low ionization nuclear emission-line region), the largest AGN sub-population

Singh et al. A&A 2013

Powered by ubiquitous hot old stars

Singh et al. A&A 2013

√ LINERS are LIERS!

Powered by ubiquitous hot old stars

Sánchez et al. A&A 2013

✓ A common gradient in the oxygen abundance ✓ $\alpha(O/H) = -0.12 +/-0.1 \text{ dex/re}$ between 0.3 and 2 disk effective radii (re)

The slope is independent of morphology, incidence of bars, absolute magnitude or mass.

lonized gas detected in all galaxies!

Science highl

✓ NGC 4676

"The Mice galaxies"

Wild et al. 2014

"The Mice galaxies"

After CALIFA

- ✓ The next step after CALIFA is a larger sample.
- √ Remaining questions that need statistics (>10kgalaxies)

SDSS

2.106

After CALIFA

- ✓ The next step after CALIFA is a larger sample.
- √ Remaining questions that need statistics (>10kgalaxies)

After CALIFA Manga (SDSS extension, ~5k Galaxies)

- ✓SAMI (AAT, observation started, ~3k galaxies)
- √HECTOR (AAO, in development, 100k galaxies)

Spatial coverage, spatial resolution and wavelength coverage

✓ CALIFA will retain properties that make it interesting even after next generation IFS surveys are available.

Spatial coverage, spatial resolution and wavelength coverage

Observational Parameters	
Spectral range (simultaneous)	0.465-0.93 µm
Resolving power	2000@0.46 μm
	4000@0.93 μm
Wide Field Mode (WFM)	
Field of view	1x1 arcmin²
Spatial sampling	0.2×0.2 arcsec ²
Spatial resolution (FWHM)	0.3-0.4 arcsec
Gain in ensquared energy within	2
one pixel with respect to seeing	
Condition of operation with AO	70%-ile
Sky coverage with AO	70% at Galactic Pole
Limiting magnitude in 80h	I _{AB} = 25.0 (R=3500)
	I _{AB} = 26.7 (R=180)
Limiting Flux in 80h	3.9 10 ⁻¹⁹ erg.s ⁻¹ .cm ⁻²
Narrow Field Mode (NFM)	
Field of view	7.5x7.5 arcsec ²
Spatial sampling	0.025x0.025 arcsec ²
Spatial resolution (FWHM)	0.030-0.050 arcsec
Strehl ratio	10-30%
Limiting Flux in 1h	2.3 10 ⁻¹⁸ erg.s ⁻¹ .cm ⁻²
Limiting magnitude in 1h	$R_{AB} = 22.3$
Limiting surface brightness in 1h	$R_{AB} = 17.3 \text{ arcsec}^{-2}$

Conclusions

- ✓ CALIFA is unique opportunity to understand the baryonic physics of galaxies using integral field spectroscopy.
- ✓ CALIFA is a **legacy survey**, data are being collected, quality is excellent, and all will be public!
- **✓ CALIFA** will retain properties that make it **interesting** even after next generation IFS surveys are available

DR3 !!!!!!

