

TOROS: The Transient Optical Robotic Observatory of the South

Tania Peñuela

CGWA — The University of Texas RGV

Outline

LIGO outlook

EM counterparts

The Kilonova model

O1 ALIGO Run GW150914

TOROS follow-up

The bigger picture

The TOROS Team and Partnerships

- The CGWA at the UTRGV (USA)
- OAC IATE (Argentina)
- Texas A&M (USA)
- California State University Fullerton (USA)

- Pontificia Universidad Católica (Chile)
- Universitá di Urbino (Italy)
- Observatory of Rome (Italy)
- And the LIGO-VIRGO Consortium

GW150914: FIRST TOROS GRAVITATIONAL WAVE ELECTROMAGNETIC COUNTERPART SEARCH

MARIO C. DÍAZ ¹, MARTIN BEROIZ^{1,2}, TANJA PEÑUELA^{1,3}, LUCAS M. MACR⁴, RYAN J. OELKERS⁴, DIEGO GARCIA⁶, RUBEN VRECR⁵, JUAN CABRAL⁵, CARLOS COLAZO⁵, MARIANO DOMINGUEZ², BRUNO SANCHEZ⁵, SEBASTIAN GUROVICH⁵, MARCELO LARES⁶, JENNIFER MARSHALL⁴, DARREN DEPOY⁴, MARICA BRANCHES⁶ AND NELSON PADILLA⁷, NICOLAS A. PEREYRA¹, SOMA MUKHEREE⁴, MATT BENACQUISTA¹, JOEY KEY¹

LIGO outlook

- LIGO's limiting sensitivity has improved (by > than a factor of 10) over the entire initial LIGO frequency band and in bandwidth to lower freqs. (from ~ 40 Hz to ~ 10 Hz)
- The most likely objects are BH binaries, NS binaries and BH-NS binaries:
- Inspiraling NS binaries to a distance of 200 Mpc.
- NS-BH binaries will be detected out to 650 Mpc
- + Coalescing BH-BH systems out to $z\sim 0.4$

Figure 1: LIGO-VIRGO Projected limiting sensitivity, Abbott et al. and the LVC, 2016

Epoch			2015 - 2016	2016 - 2017	2017 - 2018	2019 +	2022+ (India)
Estimated run duration			4 months	6 months	9 months	(per year)	(per year)
Burst range/Mpc LIGO Virgo		40-60	$\begin{array}{c} 60-75\\ 20-40 \end{array}$	$\begin{array}{c} 75-90 \\ 40-50 \end{array}$	$\begin{array}{c}105\\40\!-\!80\end{array}$	105 80	
BNS range/Mpc LIGO Virgo		LIGO Virgo	40-80		$\frac{120-170}{60-85}$	$200 \\ 65 - 115$	200 130
Estimated BNS detections			0.0005 - 4	0.006 - 20	0.04 - 100	0.2 - 200	0.4 - 400
90% CR	% within mediar	5 deg^2 20 deg^2 $1/\text{deg}^2$	< 1 < 1 480	$2 \\ 14 \\ 230$	> 1-2 > 10	> 3-8 > 8-30	> 20 > 50
searched area	% within mediar	5 deg^2 20 deg^2 $1/\text{deg}^2$	6 16 88	20 44 29			

BNs rates, Abbott et al. and the LVC, 2016

Tania Peñuela | CGWA — The University of Texas RGV

Localization

- Posterior probability distributions for the sky position are constructed following a Bayesian framework (Veitch, J. et al. 2015; Cornish et al. 2015, Singer & Price 2016.)
- Information comes from the time of arrival, plus the phase and amplitude of the GW.
- One can understand localization through triangulation by using the observed time delays between sites (*Fairhurst, et al. 2009; Fairhurst et al., 2011*).

Detectors around the world

$$\sigma_t = 1/2\pi\rho\delta_f \sim 10^{-4}s \tag{1}$$

Friend of Friends, Córdoba, March-April 29-01, 2016

Figure 4: Abbott et al. and LVC, 2016

EM counterparts

The Kilonova model

- EM counterparts of GWs are expected (Schutz et al. 1986, Sylvestre et al. 2003, Sttubs et al. 2008, Stamatikos et al. 2009, Metzger and Berger 2012).
- In the case of face on activity we expect SGRBs to be coincident with the GW alarms.
- sGRBs are rare (0.3 yr^{-1}) within 200 Mpc (mean observable distance of LV).
- NIR peak? -depth and area for IR detectors needed-> optical follow up is the best alternative and the most inexpensive way to go!

Friend of Friends, Córdoba, March-April 29-01, 2016

Figure 5: Potential EM counterparts of a GW (Metzger & Berger, 2012)

They are important because:

- 1. They could add precision to the inferred binary parameters (Hughes & Holz 2003)
- 2. They will Improve significantly the localization of the putative source (for a determination of \sim arcsecond sky positions)
- 3. Identify the merger redshift, and therefore the energy scale of the sources.

Figure 6: On axis sGRB and Kilonova (Metzger & Berger 2012)

O1 ALIGO Run

- 74 groups, ground and space based facilities, MOU with the LVC.
- Only 25 were able to perform follow up for the first detection.
- The program for EM follow up is based on a system that has been established for broad-band follow up of GRBs. it distributes times and locations through the Gamma-ray coordinate network (GCN). The results of each of the teams are published back through the same system in the form of small bulletins i.e. GCN circulars.
- LIGO data now is restricted now to MOU partners, but after the 4th high confidence published detection, data will be open to the public.

GW150914

- September 14, 2015 at 09:50:45 UTC Both detectors simultaneously observed a gravitational wave signal.
- A 35 to 250 Hz jump was observed with a peak gravitational strain of 1.0×10^{-21}
- The signal was observed with a matched filter S/N of 24 and a significance of $>5.1\sigma.$
- It matches a wave-form predicted by general relativity for the inspiral and merger of BBH. With masses of ~ 36 and ~ 29 and the final BH mass is $\sim 62~M_{\odot}$.
- The source lies at a $z \sim 0.1$ (or $\sim 410 Mpc$)
- It is the first time we detect directly GWs and the first observation of BBH merger.

Friend of Friends, Córdoba, March-April 29-01, 2016

Figure 7: LVC 2016

Tania Peñuela | CGWA — The University of Texas RGV

Pipelines

For O1, four low-latency pipelines were prepared to receive and process signals from GWs.

Un-modeled GW burst search:

- The coherent Wave Burst (cWB; Klimenko et al. 2015)
- Omicron+LALInference Burst (LIB; Lynch et al. 2015)

NS binary mergers using matched filtering:

- GSTAL (Cannon et al. 2015)
- Multi-band Template Analysis (MBTA; Adams et al. 2015)

Figure 8: Time-line of the observations of GW150914.

TOROS follow-up

The observatory

- At Cerro Macón, 4600m above the see level
- Conditions are great, very low cloud activity and 93% of photometric nights per year.
- This site has been tested and it was pre-selected for the E-ELT
- First observatory fully dedicated to the search of GW optical counterparts.

Location and seeing, Cerro Macón

The telescope:

- 0.6m telescope
- 10k × 10k CCD camera
- Focal length of 1815mm
- FoV: 9 deg^2
- Pixel scale $\sim 1^{\prime\prime}/px$
- White light (mainly, covering a $0.4 0.9 \mu m$ window)
- We estimate to be able to cover around 200 deg^2 per night down to $I_{AB} \sim 22mag$

Toritos: The Pilot project

- TOROS will not be operational before 2017
- Small (0.45m) Schmidt Cassegrain telescope
- FoV: $0.25 deg^2$
- pixel scale: 0.45 "/px
- Reduced area, but it can survey up to 8 deg^2 per night down to $I_{AB} \sim 19mag$.

Figure 10: Construction of TOROS at cerro Macón.

Tania Peñuela | CGWA — The University of Texas RGV

Figure 11: TOROS strategy

Estación Astrofísica de Bosque Alegre (EABA)

- 1.54m telescope
- 1024 \times 682 px CCD camera
- FoV: 12.7 \times 8.5 $arcmin^2$
- Pixel scale $\sim 0.75''/px$

- White-light $(0.35 1.\mu m)$
- Area: 0.6 deg^2
- Limiting mag r_{AB} = 21.7±0.3mag with ~ 10 − 20min exposures (see observations).

Friend of Friends, Córdoba, March-April 29-01, 2016

cWB, LIB, BYST, LALinf Sky-maps. 90% of the credible localization area for cWB: 310 $\rm deg^2$, LIB : 750 $\rm deg^2$, and the LALinf: 620 $\rm deg^2$

Tania Peñuela | CGWA — The University of Texas RGV

Figure 12: cWB, LIB, BYST, LALinf Sky-maps. Black points are our pointings.

Galaxy Ranking Approach

- 1. Galaxy Catalogs: We use GWGC (White et al. 2010) $\sim 53,000$ galaxies within 100 Mpc with reliable distances, blue magnitudes.
- 2. We used a built in-house "scheduler" with the following criteria:
 - -Observability at location and time.

-Luminosity: $B_{Abs} \ge -21$ Mag (AB). The distribution of BNS (in the nearby univ.) is expected to follow star formation due to short merger timescales (*Phinney* et al. 1991, Belczynski et al. 2002).

-Distance: ≤ 60 Mpc (99.99 of completeness of catalog is reached at 40 Mpc).

- 3. We **cross-match** galaxies with the skymaps, and rank galaxies by assigning a probability $P_{g,i}$
- We map host galaxies and its surroundings out to ~ 5kpc (Berger et al. 2014, Fong & Berger 2013, Church 2011 and etc...)

Observations

Date	ID	RA	DEC	t_{exp}	Tile	dist
	-	(deg)	(deg)	(s)	-	(Mpc)
2015-09-16	IC1933	51.416101	-52.78547	600	1,2,3,4	17.45
2015-09-16	NGC1529	61.833301	-62.89993	600	5,6,7,8	54.76
2015-09-16	IC2038	62.225246	-55.99074	600	9,10,11,12	7.00
2015-09-16	IC2039	62.259901	-56.01172	600	9,10,11,12	7.63
2015-09-17	ESO058-018	102.59385	-71.03123	1020	13	52.23
2015-09-17	ESO084-015	65.550449	-63.61097	1140	14	14.99
2015-09-17	ESO119-005	72.072451	-60.29376	1080	15	9.73
2015-09-17	NGC1559	64.398901	-62.78358	900	16	12.59
2015-09-17	PGC016318	73.728898	-61.56747	1020	17	9.54
2015-09-17	PGC269445	100.20915	-71.33026	1140	18	54.83
2015-09-17	PGC280995	96.382499	-69.15257	1140	19	55.08
2015-09-17	PGC128075	64.859998	-60.53844	720	20	63.71
2015-09-17	PGC381152	63.584547	-58.20726	1200	21	13.26
2015-09-17	PGC075108	63.670349	-58.13199	1200	21	13.29

Table 1: Targeted host galaxies.

Figure 13: Some of the images taken with the EABA telescope (PGC128075, NGC1559 and PGC381152)

Image differencing methods and Results!!!

Figure 14: Example of Image differencing on a fraction of field PGC128075. We use Alard & Lupton 1998 and Bramich et al. 2008.

For O1 LIGO Run we have:

- Tested our main Pipeline for transient identification(couple of days)
- Trained our response time to the LIGO alarms (couple of hours)
- Tested our host-galaxy ranking approach (good likelihood and host-galaxy matching for initial and final sky maps)
- We have been successful at producing reference imaging *a posteriori* (There we had some trouble with weather conditions in EABA)

The bigger picture

Friend of Friends, Córdoba, March-April 29-01, 2016

Figure 15: We are just a little part of a huge project!

Tania Peñuela | CGWA — The University of Texas RGV

				Area Contained probability (%)			probabili		
Instrument	Band ^a	Depth ^b	Time ^c	(deg ²)	cWB	LIB	BSTR.	LALInf.	GCN
Gamma-ray									
Fermi LAT	20 MeV-300 GeV	1.7×10^{-9}	(every 3 hr)	- 1	100	100	100	100	18709
Fermi GBM	8 keV-40 MeV	$0.7-5 \times 10^{-7} (0.1-1 \text{MeV})$	(archival)	_	100	100	100	100	18339
INTEGRAL	75 keV-1 MeV	1.3×10^{-7}	(archival)	-	100	100	100	100	18354
IPN	15 keV-10 MeV	1×10^{-9}	(archival)	-	100	100	100	100	-
X-ray									
MAXI/GSC	2-20 keV	1×10^{-9}	(archival)	17900	95	89	92	84	19013
Swift XRT	0.3-10 keV	5×10^{-13} (gal.)	2.3.1.1	0.6	0.03	0.18	0.04	0.05	18331
		$2-4 \times 10^{-12}$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.26	18346
Optical									
DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	18344, 18350
iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2	18337
KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361
MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	49	18333, 18390, 18903, 19021
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394
La Silla-QUEST	g, r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	18347
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	18331
	u	u < 18.8 (LMC)	3.4, 1, 1						18346
TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	18332, 18348
TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338
VST	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	18336, 18397
Near Infrared									
VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	18353
Radio									
ASKAP	863.5 MHz	5-15 mJy	7.5, 2, 6	270	82	28	44	27	18363, 18655
LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1	18364, 18424, 18690
MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86	18345

Figure 16: Summary of EM efforts, LVC & the astronomers, 2016.

Tania Peñuela | CGWA — The University of Texas RGV

- Gamma-Ray facilities covered 100% of the probability areas.
- Xray coverage is more difficult to quantify, it is relatively sparse at fluxes fainter than 10⁻⁹ ergcm⁻²s⁻¹.
 E.g. the swift XRT enclosed a probability of 0.3%. Down to the limit, MAXI observations are complete.
- All opt. facilities together tiled $\sim 870 deg^2$ covering 57% of the LIB map, and 36% of the final LALinf map.
- Radio coverage was extensive with a contained prob. of 86%.

EM follow up of GW150914, LVC & the astronomers, 2016.

Thank you!