

Galaxy Evolution with Machine Learning (a very misleading title...)

Laerte Sodré Jr.

IAG – USP

FoF Meeting, Córdoba, March 29 – April 1, 2016

1. Motivation: J-PAS, J-PLUS, S-PLUS, PFS...

2. Estimation of emission lines for simulation of realistic spectra and survey design

3. BEEP: Bayesian Estimation with Empirical Priors

- Photometric redshifts for LSS
- Spectral Synthesis for Galaxy Evolution
- GALANTE survey for bright stars

1. J-PAS

Javalambre Physics of the Accelerating Universe Astrophysical Survey

j-pas.org

arXiv: 1403.5237

- Collaboration between Brazil and Spain
- Javalambre Astrophysical Observatory (JAO): two telescopes: 2.5m (FOV 3 deg diam) & 80cm (FOV 2 deg diam)

managed by CEFCA- Centro de Estudios de Física del Cosmos de Aragón, in Teruel, Spain

- Photometric survey of ~8500 sq. deg. to i~22
- Photometric system with 59 filters (54 narrow band, 5 broad band)

J-PAS Science

- Main driver: the nature of Dark Energy through measurement of the BAO scale up to z~1
- Accuracy of ~0.003(1+z) up to z~1 for ~10⁸ LRGs: measurement of radial BAOs!
- DE science: BAOs, galaxy clusters, gravitational lensing, RSDs
- Large scope of science: from asteroids to cosmology...
- J-PAS photometry ~ low resolution spectrum (R~40-60) for each pixel in the sky up to 23 mag arcsec⁻²!

New window: "All-sky" IFU! Potential for new discoveries!

distribution of stellar population properties within galaxies

Extensions: J-PLUS (T80-N)

J-PLUS: Survey with T80-N (@JAO) Motivation:

- Photometric calibration for J-PAS
- Test of J-PAS scientific and technical management systems
- 12 filters: SDSS griz + 8 narrow/intermediate band filters
- Survey area: 5000 sq. deg.
- ~3 years, started Nov 2015
- Science: from asteroids to distant quasars

J-PLUS Filter System Transmission Curves (Only Filter)

Extensions: S-PLUS (T80-S)

S-PLUS: Survey with T80-South (@CTIO)

Science with S-PLUS

- Stellar populations which models fit the observations best? Extr
- Galaxy morphology, galaxy evolution Extr
- Groups, clusters Extr
- Planetary nebula and globular clusters (Galactic and extragalactic) Pet, Extr
- The halos of galaxies and intracluster light Pet, Extr
- Variable stars Low/High cadence, Galactic, Extr
- Spectral and morphological type classification Extr
- Halpha and OII maps star formation in the nearby universe Extr
- The lowest-metallicity and carbon-enhanced stars in the Galaxy ultra-short
- Search for blue horizontal branch stars and blue stragglers Extr
- Asteroids Low/High cadence, Extr (if we pay attention to the order of filters)
- Supernovae High cadence, Low cadence
- Satellites in the Milky Way Extr
- Quasars Extr
- Quasar variability High cadence

PFS/SuMIRe Prime Focus Spectrograph for the Subaru Measurement of Images and Redshifts survey

- PI: Hitoshi Murayama Kavli IPMU (U. Tokyo)
- Survey epoch: 2019-2023
- Spectrograph for the Subaru Telescope: 2400 optical fibers within a FOV of 1.3 deg diameter
- Spectral coverage: 0.38 1.3 microns,
 R ~ 3000 5000
- Brazil (USP+LNA): optical fiber subsystem

PFS/SuMIRe

Prime Focus Spectrograph for the Subaru Measurement of Images and Redshifts survey

- Science:
- BAOs @ 0.8 < z < 2.4 (9.3 h⁻³ Gpc³)
- Cosmological distances with accuracy of 3%; structure growth with 6%
- Local Cosmology: Milky Way & Andromeda history through the observation of ~10⁶ stars
- Chemo-dynamical evolution and dark matter in Local Group dwarf galaxies
- Galaxy populations and structures @ 1<z<2
- "Lyman break" & "Lyman alpha" galaxies @ 3<z<7: glimpses on reionization

Takada et al., 2014 arXiv:1206.0737

http://sumire.ipmu.jp/en/2652 https://www.youtube.com/watch?v=5mW3v2k8Ofo

2. A data-driven approach to emission line properties of galaxies

- Motivation: Survey design
- new surveys (e.g. JPAS, PFS) require realistic simulated spectra for defining their parameters and preparing analysis tools
- most spectral evolution models (e.g. Bruzual & Charlot 2003) simulate only the spectral continuum + absorption lines (stellar libraries)
- Here we propose an *empirical, datadriven approach,* to model emission lines given a simulated galaxy continuum + absorption lines spectrum

Modeling Spectra with STARLIGHT

- STARLIGHT (Cid Fernandes et al., 2005) models a spectrum (continuum + absorption lines) using Bruzual & Charlot (2003) SSPs
- Each spectrum (regions without emission lines) is modeled by a sum of SSPs + extinction + line broadening
- Emission lines are not part of the synthesis; their parameters are obtained by the analysis of the observed minus fitted spectrum
- Sample: SDSS/DR10 spectra with S/N>25 BPT diagram: SF: 15445 AGN: 40748 P:16644

What we want from STARLIGHT: model spectra + EWs of ELs

An Empirical Approach

- There is a connection between galaxy continuum and emission lines
- Given f_{λ} , estimate emission line EWs

Model spectrum (red)

Here: we use results of STARLIGHT modeling (Cid Fernandes et al. 2005): model spectra and EWs of ELs

- some ML tools:
- PCA
- ANN
- symbolic regression with Eureqa...

EW estimation

We assume that, for each line, we may relate its EW to the flux of the model continuum at a certain *pivot wavelength*:
 EW = a + b f(λ_p) + c f(λ_p)²

• We assume that the model spectra is normalized at λ =4020A

• λ_p : wavelength that maximizes the absolute value of the Spearman correlation coefficient between the line EW and f(λ) for a sample

12

Typical uncertainties in EWs:

- SF: 0.18 0.35 dex
- AGN: 0.25 0.41 dex

families of lines tend to have similar pivot wavelengths!

Table 1. Pivot wavelength for the SF sample.

line	number of	r_s	λ_p
	galaxies		(Å)
[OII]3727	13200	-0.846	4317
[NeIII]3869	13474	0.551	3863
$H\delta$	15055	0.739	3995
$H\gamma$	14960	0.785	3819
[OIII]4363	1790	0.410	4063
$H\beta$	15164	0.834	3819
[OIII]4959	14551	-0.857	4317
[OIII]5007	15135	-0.866	4317
[OI]6300	14966	0.778	4032
[NII]6548	14832	0.627	4062
$H \alpha$	15445	0.852	3872
[NII]6584	15445	0.666	4062
[SII]6716	14997	0.844	3871
[SII]6731	15023	0.840	3871
[HeI]4471	10395	0.318	3583

Table 2. Pivot wavelength for the AGN sample.

line	number of	r_s	λ_p
	galaxies		(Å)
[OII]3727	37841	0.547	4303
[NeIII]3869	22177	0.356	4073
$H\delta$	30239	0.585	3996
$H\gamma$	25436	0.734	3995
[OIII]4363	6029	0.345	4071
$H\beta$	34227	0.704	3972
[OIII]4959	31271	0.515	3985
[OIII]5007	37679	0.524	3975
[OI]6300	35678	0.365	4005
[NII]6548	36925	0.754	4303
$H\alpha$	40748	0.768	4303
[NII]6584	40748	0.753	4303
[SII]6716	35887	0.695	4303
[SII]6731	35746	0.682	4303
[HeI]4471	12866	0.440	3883

For each line: $EW = a + b f(\lambda_p) + c f(\lambda_p)^2$

3. Bayes Theorem for parameter estimation

We want to estimate a parameter x from data D and a set of assumptions/models H

• Bayes theorem:

P(x|D,H) α P(D|x,H) P(x|H) posterior likelihood prior

photometric redshifts, spectral synthesis:
 two basic approaches:
 templates
 training set
 actually, two different priors (and each method is as good as its prior)

BEEP:

Bayesian Estimation with Empirical Priors

- Wolf 2009
- Training set TS for photometric redshift estimation:
 N galaxies with M magnitudes and known redshift D':{x_{ii},z_i}
- Target galaxy y with magnitudes y_i
- Prior: redshift distribution of the TS

 $P(x|D,H) \propto P(D|x,H) P(x|H)$

as far as we sample the prior with the TS \rightarrow posterior = likelihood

BEEP:

Bayesian Estimation with Empirical Priors

- Training set (TS) for *photometric redshift* estimation:
 D:{x_{ij},z_i}
- Target galaxy y with magnitudes y,
- Likelihood that z is equal to the redshift of the i-th galaxy in TS:
 - $L(z_i) \propto exp(-E_i) = E_i = 1/2 \sum (y_i x_{ij})^2 / \sigma_i^2$

normalization: $\sum L(z_i) = 1$ (i=1...N)

 posterior P(z|y,D): to obtain a PDF for z we compute the likelihood for all galaxies in D

BEEP:

Bayesian Estimation with Empirical Priors

P(z|y,D) & P(y|z,D) P(z)

- TS: $\{x_{ij}, z_i\}$
- target galaxy photometry: {y,}
- Likelihood L(z_i) α exp(-E_i)

 $E_i = 1/2 \sum (y_i - x_{ij})^2 / \sigma_i^2$ normalization: $\sum L(z_i) = 1$ (i=1...N)

PDF P(z|y,D'): Histogram we represent P(z|y,D) by an histogram with bins $\{z_h\}$ P(z_by,D') $\alpha \sum L(z_b)$ for all galaxies in TS with z_b within bin z_b

BEEP: photometric redshifts for SDSS DR10

D: ugriz dered magnitudes + zspec

training set: 100,000

test set: 10,000

PDF: histograms with 105 Δz =0.01 bins

redshift estimates:

- most probable redshift: PDF peak
- nearest-neighbour redshift: clone
- mean redshift: $\langle z \rangle = \Sigma L_i z_i$

2000 2000

20

80

02

04

0.6

0.8

• quality of the estimation: redshift dispersion $\sigma_{i} = [\Sigma L_{i} (z_{i} - \langle z \rangle)^{2}]^{1/2}/(1 + \langle z \rangle)$

19

prior

an example:

- maximum probability...0.185
- mean redshift.....0.160
- median redshift.....0.157
- clone redshift.....0.184

🔹 quality: σ_.= 0.038

BEEP: galaxy spectral synthesis

- Challenge within J-PAS (still going on...) aim: compare & improve SED fitting codes
- Input:
- 98 synthetic spectra (different SFHs, extinctions, S/N,...) + zphot
- J-PAS & J-PLUS photometry
- Filter response curves, extinction law
- Set of 2079 SSPs (MILES) with different ages and metallicities
 - Output: mean ages, metallicity, extinction...

BEEP: galaxy spectral synthesis

- Training Set: 200K simulated spectra in J-PAS & J-PLUS bands
- Model spectrum:
 - star formation rate:

$$\Psi = \Psi_0 \times \exp(-t/\tau)$$

– mean (mass-weighted) stellar age:

$$< t > = \tau \frac{(1+x_1) - (1+x_2)\exp(-\Delta x)}{1 - \exp(-\Delta x)}$$

where $x = t/\tau$, $x_1 = t_1/\tau$, $x_2 = t_2/\tau$, $\Delta x = x_2 - x_1$

 $- P(\langle t \rangle)$ uniform between t_1 and t_2

- parameters: number of SSPs, $z, A_v, < t >$

BEEP: galaxy spectral synthesis

Parameter	J-PLUS	J-PAS	
Αν	0.63	0.53	
log <t></t>	0.47	0.39	at.
log <t<sub>M></t<sub>	0.29	0.29	MINA
$\log \langle Z \rangle$	0.50	0.50	PRELL
log <z<sub>M></z<sub>	0.38	0.38	

Competitive results!

BEEP allows to use empirical and theoretical training sets

BEEP: GALANTE SURVEY

 Bright-star northern Galactic plane survey with T80N@JAO: AB mag=18, S/N=70

estimation of stellar parameters: effective temperature, gravity, metallicity, extinction

- with Paula Coelho, Walter dos Santos Jr.:
- BEEP with theoretical (e.g., Coelho 2914)/observed (SDSS/SEGUE)/mixed training sets
- combination of different methods with data fusion

summary

• J-PAS, J-PLUS, S-PLUS:

current surveys need up-to-date tools to maximize the extraction of information from data

 Estimation of emission lines from model spectra realistic spectra for survey design

 BEEP: Bayesian Estimation with Empirical Priors an useful tool for photometric redshifts and spectral synthesis