The formation of disc galaxies in computer simulations

Cecilia Scannapieco Departamento de Física, FCEyN, Universidad de Buenos Aires

Halo & galaxy formation is a highly non-linear, multiscale process that requires the use of numerical simulations

Credit: V. Springel

- Dark Matter halos form via gravitational instability
- Gas cools down and condenses into the centers of the haloes
- High-density gas fragments and forms stars

GRAVITY

COOLING

STAR FORMATION

Feedback due to stellar evolution returns energy and chemical elements to the interstellar medium

COOLING

STAR FORMATION

Photoionization & chemical composition effects are important

FEEDBACK

Wiersma et al. 2009

Star formation is unresolved in the simulations.

Still many uncertainties:

- High vs low-mass star formation
- Initial Mass Function (IMF): universal, timedependent?
- Pop-III (metal-free) stars

GRAVITY

COOLING

STAR FORMATION

In simulations: Kennicutt-Schmidt law (Kennicutt+2012)

Feedback: in the absence of feedback, too high SFRs and stellar masses

→ need a physical process that reheats the gas or prevents it from cooling
COOLING

Supernova (SN) explosions ~ dwarf to MW-mass galaxies STAR FORMATION

Active Galactic Nuclei (AGN) ~ massive galaxies

Other, under-dominant (?) processes at galaxy scales under debate

GRAVITY

Galaxy formation simulations

- 1. Start with an Initial Condition, e.g. consistent with cosmological concordance model
- 2. Run the simulation (including relevant physics), optimize computational cost, e.g. use zoom-in technique

3. Check whether results are consistent with observational results/ expectations

Galaxies are not isolated

- Mergers/interactions with other systems
 - Change galaxy morphology depends on angular momentum
 - → Induce instabilities (e.g. bars)
 - Affect star formation and chemical properties
- Accretion of gas from intergalactic medium (IGM)
 - Ontributes gas with different abundance patterns
 - Enhances star formation (provided it penetrates the halo)
- Galactic winds
 - \rightarrow Mixing of gas enriched within galaxies with gas in the IGM
 - Mixing of gas within halos galactic fountains

Galaxies are not isolated

→ GALAXY DIVERSITY!!

Outline

Feedback in galaxy formation simulations

- effects of Supernova (SN) feedback
- variations between models
- Galaxy disks
 - diversity
 - survival/destruction
- Galaxy diversity
 - environment
- Discussion:
 - other types of feedback?
- Summary

SN Feedback in galaxy formation

Without feedback mechanisms, the gas efficiently cools down and forms stars. In a cosmological context, this results in:

 \rightarrow inconsistent with observed SFRs/galaxy stellar masses

SN Feedback in galaxy formation

Without feedback mechanisms, the gas efficiently cools down and forms stars. In a cosmological context, this results in:

 \rightarrow inconsistent with observed SFRs/galaxy stellar masses

ightarrow very high SFRs at early times ightarrow spheroidal, old galaxies

SN Feedback and metallicity

Winds triggered by SN explosions transport mass and metals into the ISM and IGM of galaxies

SN Feedback - problems

How to implement feedback in simulations?

- Ad-hoc winds versus cooling shutoff/delayed feedback
- Input parameters needed, fine-tuning
- Dependence on numerical choices, resolution

SN Feedback - problems

How to implement feedback in simulations?

- Ad-hoc winds versus cooling shutoff/delayed feedback
- Input parameters needed, fine-tuning
- Dependence on numerical choices, resolution

Mon. Not. R. Astron. Soc. 423, 1726–1749 (2012)

doi:10.1111/j.1365-2966.2012.20993.x

The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation

C. Scannapieco,^{1*} M. Wadepuhl,² O. H. Parry,^{3,4} J. F. Navarro,⁵ A. Jenkins,³ V. Springel,^{6,7} R. Teyssier,^{8,9} E. Carlson,¹⁰ H. M. P. Couchman,¹¹ R. A. Crain,^{12,13} C. Dalla Vecchia,¹⁴ C. S. Frenk,³ C. Kobayashi,^{15,16} P. Monaco,^{17,18} G. Murante,^{17,19} T. Okamoto,²⁰ T. Quinn,¹⁰ J. Schaye,¹³ G. S. Stinson,²¹ T. Theuns,^{3,22} J. Wadsley,¹¹ S. D. M. White² and R. Woods¹¹

Aquila Project results

Different codes predict different galaxy properties

e.g. morphologies, gas fractions, SFRs, stellar masses, sizes

Aquila Project results

Different codes predict different galaxy properties

e.g. morphologies, gas fractions, SFRs, stellar masses, sizes

The circularity parameter \mathcal{E} measures rotation, $\mathcal{E} \sim 1$: disk-like rotation

Aquila Project results

□ Hints on e.g. disk formation from common results

Galaxies with higher late-time SFRs have more significant disks

Aquila Project results

 \Box All simulations predict galaxies with too large M_{stellar} ?

Galaxy disks

Simulations of 8 galaxies, MW-mass, mildly isolated

- Galaxies are diverse
- Some have dominant disks, others don't
- Some have bars

Galaxy disks

Separate into disk and spheroidal components to study disks

Dynamical decomposition based on rotational velocity

Galaxy disks

Disk particles populate outer regions

Galaxy disks

Disks form from late star formation (disks are young)

Galaxy disks

Disks form from the inside-out

Disk Spheroid

Galaxy disks

Disks easily destroyed due to merger events

Galaxy disks

Disks destroyed/shrinked during periods of misaligned gas accretion

Diversity expected in A CDM coming from diverse merger/accretion histories. E.g. inside-out formation

Diversity expected in A CDM coming from diverse merger/accretion histories. E.g. dynamics (morphology)

□ Diversity expected in ∧ CDM coming from diverse merger/accretion histories. E.g. disk rotation

□ Diversity expected in ∧ CDM coming from diverse merger/accretion histories. E.g. inner structure

□ Diversity expected in ∧ CDM coming from diverse merger/accretion histories. E.g. outer structure

Diversity expected in A CDM coming from diverse merger/accretion histories. E.g. spheroid dynamics

Diversity expected in A CDM coming from diverse merger/accretion histories. E.g. gas dynamics

 \Box Diversity expected in Λ CDM coming from diverse merger/accretion histories. E.g. bar formation

14

The Milky Way: not an isolated galaxy

Constrained Local UniversE simulations: CLUES
 Identify MW & M31 candidates

The Milky Way: not an isolated galaxy

Creasey+ 2015, CS+2015

The Milky Way: not an isolated galaxy

Environmental effects:
 higher SFRs in richer
 environments (?)

Creasey+2015

Other feedback mechanisms?

Most simulations including only SN feedback still have too high SFRs at early times, consuming most of the gas which becomes unavailable for later star formation.

> Radiation pressure from young, massive stars: effects on ISM comparable to SN feedback? (e.g. Hopkins+2011, Agertz+2013, Aumer+2013, Stinson+2013)

Observations of young star clusters in GMCs show that the gas disperses before the first SNe explode

 \rightarrow The radiation from a young stellar population carries large amounts of energy and momentum

Other feedback mechanisms?

How to implement radiation pressure in simulations? Momentum-driven feedback, parametrized in general as:

$$\dot{p}_{\rm rad} = (\eta_1 + \eta_2 \tau_{\rm IR}) \frac{L(t)}{c}$$

L(t): luminosity of the stellar population

- η_1 : efficiency of radiation absorption/scattering
- η_2 : efficiency of momentum transfer from IR photons (re-radiated by dust and scattered by dust grains) τ_{IR} : optical IR depth (depends on ρ , Z, σ ?)

Effects of radiation-pressure feedback

invariant to assumptions?

SN + Radiation pressure feedback

Abundance of disks:

Aumer+ 2013

invariant to assumptions?

Ad-hoc winds & ISM model

Abundance of disks:

Grand+ 2016

Summary

Feedback mechanisms regulate star formation in galaxies, but:

- Significant uncertainties in physical details
- Not clear how to implement at resolved scales
- SN: thermal versus kinetic
- Radiation pressure (?)
- Still, simulations help understand relevant physics of disk formation
 - Disks are young
 - Disks can be destroyed by mergers and by misaligned gas accretion
 - Disks can be rebuilt provided gas is available
 - Environmental effects on Milky Way might be relevant

 \Box Galaxies are diverse in Λ CDM, even at a fixed stellar mass

Codes should reproduce such diversity