DETERMINING COSMOLOGICAL PARAMETERS WITH COSMIC VOIDS

Т

C

CONICET

N

OAC

Astronómic de Córdoba

Carlos Mauricio Correa Fayn (IATE, Córdoba, Argentina) <u>Contact</u>: cmcorrea@oac.unc.edu.ar

<u>Collaborators:</u> Dante Paz (IATE, Córdoba, Argentina) Nelson Padilla (UC, Chile) Raúl Angulo (CEFCA, Spain)

> 7th Friends of Friends Meeting April 2017 - Córdoba - Argentina

NON FIDUCIAL COSMOLOGY

ALCOCK-PACZYŃSKI TEST

WITH COSMIC VOIDS

PRECEDENTS: Lavaux et al. (2012); Sutter et al. (2014) Cai et al. (2016) Hamaus et al. (2015, 2016)

Figure from Euclid Project (ESA)

INTRODUCTION

Voids as cosmological laboratories

Voids are the subdense regiosns of the universe.

As fundamental components of the large scale structure of the universe, they contain invaluable informaction about its fundamental properties:

GEOMETRIC

DISTORTIONS (GD)

- Geometry
- Energy and matter content $(H_{0,}\Omega_{m},\Omega_{\Lambda})$
- Nature of gravitation

REDSHIFT SPACE

DISTORTIONS (RSD)

REDSHIFT SURVEYS OF GALAXIES

COSMOLOGICAL INFORMATION

SDSS Abazajian et al. (2009)

 $(\Delta \theta, \Delta z) \rightarrow (\sigma, \pi) [h^{-1} M pc]$

(Alcock & Paczyński 1979)

Siumulated voids

SIMULATION	
Name	Millennium XXL Angulo et al. (2012)
Cosmology	 Ω_m = 0.25 Ω_Λ = 0.75 H₀ = 73 km s⁻¹ Mpc⁻¹
Dimensions	3 h ⁻¹ Gpc size
Particles	Dark matter haloes
Snapshots	0.5; 1; 1.5
Impact	Resolution and volume (future surveys)
VOIDS	
Identificator	Modified version of Padilla et al. (2005)
Description	Subdense spheres
Radius criterion	20% mean integrated density of the universe

Enviroment and dynamics

Sheth & van de Weygaert (2004) Ceccarelli et al. (2013) Paz et al. (2013)

The idea

ANISOTROPIC MAP

COSMOLOGICAL PARAMETERS IN THE MODEL

The model

STRONG REDSHIFT DEPENDENCE!!

RSD (Paz et al. 2013; Hamaus et al. 2016)

$$1 + \xi(\boldsymbol{\sigma}, \boldsymbol{\pi}) = \int \frac{1}{\sqrt{2\pi} \boldsymbol{\sigma}_{v}} \exp \left[-\frac{\left(v_{.\parallel.} - \boldsymbol{v}(\boldsymbol{r}) \frac{\boldsymbol{r}_{.\parallel.}}{\boldsymbol{r}} \right)^{2}}{2 \boldsymbol{\sigma}_{v}^{2}} \right] [1 + \xi(\boldsymbol{r})] d^{3} v_{.\parallel.}$$

$$\boldsymbol{\xi}(\boldsymbol{r}) = \frac{1}{3r^2} \frac{d}{dr} \left(r^3 \boldsymbol{\Delta}(\boldsymbol{r}) \right)$$

$$\boldsymbol{v}(\boldsymbol{r}) = -\frac{1}{3} \frac{\boldsymbol{H}(\boldsymbol{z})}{(1+\boldsymbol{z})} r \boldsymbol{b} \boldsymbol{\Delta}(\boldsymbol{r}) f(\boldsymbol{z}, \boldsymbol{\Omega}) \qquad f(\boldsymbol{z}, \boldsymbol{\Omega}) = \left(\frac{\boldsymbol{\Omega}_m (1+\boldsymbol{z})^3}{\boldsymbol{\Omega}_m (1+\boldsymbol{z})^3 + \boldsymbol{\Omega}_\Lambda} \right)^{0.55}$$

 $\begin{array}{c} \text{COSMOLOGICAL} \\ \text{PARAMETERS:} \\ \Omega_m: \text{ matter density} \\ \text{b: bias} \\ \sigma_{V:} \text{ velocity dispersion} \end{array}$

AUXILIARY PARAMETERS: R, S, P, W

 $\Delta(r) = sigmoid(r, \mathbf{R}, \mathbf{S}) + gaussian(r, \mathbf{R}, \mathbf{S}, \mathbf{P}, \mathbf{W})$

GD (THIS WORK)

$$(\Delta \theta, \Delta z) \rightarrow (\sigma, \pi)[h^{-1}Mpc] = \begin{cases} \sigma = D_A \Delta \theta = \frac{c \Delta \theta}{H_0(1+z)} \int_0^z \frac{dz'}{\sqrt{\Omega_m(1+z')^3 + \Omega_A}} \\ \pi = \frac{dd_{com}}{dz} \Delta z = \frac{c \Delta z}{H_0 \sqrt{\Omega_m(1+z)^3 + \Omega_A}} \end{cases}$$
ACDM - FLAT

Voids edges

Degeneration with σ_v

$$z=0.5$$
 $\bar{\sigma}_v=292 \, km/s$

z=0.5 $\bar{\sigma_v}=326$ km/s

z=1.5 $\bar{\sigma_v}=261 \, km/s$

z=1.5 $\overline{\sigma_v}=280 \, km/s$

Net velocity vs Rest velocity

CONCLUSIONS

- We are developing a cosmological test that not depends on a fiducial cosmology.
- Its based on the Alcock-Paczyński (1979) effect on cosmic voids.
- We used the two main parts of the correlation fucntion (voids edges).
- We tested the method on the MXXL simulation.
- We still have difficulties with:
 - velocity dispersion,
 - velocity profiles (net vs rest).

<u>Contact</u>: cmcorrea@oac.unc.edu.ar

THANKS FOR YOUR ATTENTION