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>>> pip install grispy

We present a new near neighbors searching algorithm at fixed radius, developed in Python. This module 

indexes a set of k-dimensional points on a regular grid, with optional periodic conditions, providing a quick 

approach to close neighbor queries. In this first version, we implement three types of queries: bubble, shell and 

nearest nth; as well as three different metrics of astronomic interest: the Euclidean and two distance functions 

in spherical coordinates of variable precision, Haversine and Vincenty; and also, the ability to provide a custom 

distance function. This package is particularly useful for large data sets where a brute force search becomes 

impractical.

Chalela, et al. 2021. 
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What is the Nearest Neighbors Problem?
The nearest neighbors search (NNS) problem can be defined as follows: given a set P of points defined in a 

multidimensional space, run an algorithm that, given a query point Q, finds every point of P within distance D from 

Q. This problem arises in a wide range of scientific fields, including machine learning, robotics , chemistry, 

astronomy and many other areas of application. In the particular field of astronomy, the everyday increasing amount 

of observational and simulated data requires algorithms that can handle the computational demands.

Several methods have been proposed for 

solving the NNS problem. The most popular 

method is to apply a partitioning-indexing 

scheme to track the approximate location of 

points in the multidimensional space. 

Among the algorithms that apply this 

concept are the binary-tree and cell 

techniques. GriSPy implements a cell 

technique method to efficiently solve the 

NNS problem.
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How can we solve this problem with GriSPy?

The GriSPy() class provides the indexed set of points. 

Then, we can perform 3 different types of queries:

.bubble_neighbors() 

Find neighbors within a given radius. A different radius 

for each centre can be provided.

Figure 1 is an example of this method.

.shell_neighbors()
Find neighbors within given lower and upper radii.

.nearest_neighbors() 
Find the n-th nearest neighbors for each centre.

Figure 1. Example of a 2D uniform distribution of points (empty circles). We 

used GriSPy to index these points in a regular grid. The color crosses mark the 

centres of interest and their corresponding neighbors are shown as red circles.

Given an initial set of k-dimensional points, 

a regular grid of N

k

 cells is built in the 

domain of the data. After the grid is defined, 

every point is associated with a cell.

Indexing

Given a centre point and a search radius, 

we search for neighbors only within 

those cells touched by the radius.

Searching
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When should I use GriSPy?
We compared the time performance of GriSPy against similar packages, cKDTree (scipy) and BallTree (scikit-learn), considering the case of a 

gravitational N-body simulation. In Figure 2 we show the time spent in each step of the process, Build Time (indexing of points) and Query 

Time (searching for neighbors). The principal gain that GriSPy offers is a fast building time, contrary to a fast querying time provided by the 

other two methods. When dealing with large sets of ~10

7

 data points, GriSPy outperforms the rest.

Figure 2. Time comparison of GriSPy, cKDTree and BallTree in a gravitational N-body simulation. Each column represents the time 

spent in each step, from left to right: Build, Query and Total time. For clarity the legend specifying the package and number of centres 

is splitted across the three subplots.
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Repository, installation and documentation
Github: https://github.com/mchalela/GriSPy

 

Documentation: https://grispy.readthedocs.io/en/latest/
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Thanks!

https://github.com/mchalela/GriSPy
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