
GriSPy: A Python package for Fixed-Radius Nearest Neighbors Search

Martin Chalela

a,b,c

, Emanuel Sillero

a,b,c

, Luis Pereyra

a,b,c

, Mario Alejandro Garcia

d

,

Juan B. Cabral

e,a

, Marcelo Lares

a

, Manuel Merchán

a,b

a Instituto de Astronomía Teórica y Experimental - Observatorio Astronómico de Córdoba (IATE, UNC–CONICET)

b Observatorio Astronómico de Córdoba, Universidad Nacional de Córdoba.

c Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba (FaMAF–UNC)

d Facultad Regional Córdoba, Universidad Tecnológica Nacional (FRC–UTN)

e Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS, CONICET–UNR)

>>> pip install grispy

We present a new near neighbors searching algorithm at fixed radius, developed in Python. This module

indexes a set of k-dimensional points on a regular grid, with optional periodic conditions, providing a quick

approach to close neighbor queries. In this first version, we implement three types of queries: bubble, shell and

nearest nth; as well as three different metrics of astronomic interest: the Euclidean and two distance functions

in spherical coordinates of variable precision, Haversine and Vincenty; and also, the ability to provide a custom

distance function. This package is particularly useful for large data sets where a brute force search becomes

impractical.

Chalela, et al. 2021.

XI Friends of Friends April 26 - 30, 2021

https://arxiv.org/abs/1912.09585

What is the Nearest Neighbors Problem?
The nearest neighbors search (NNS) problem can be defined as follows: given a set P of points defined in a

multidimensional space, run an algorithm that, given a query point Q, finds every point of P within distance D from

Q. This problem arises in a wide range of scientific fields, including machine learning, robotics , chemistry,

astronomy and many other areas of application. In the particular field of astronomy, the everyday increasing amount

of observational and simulated data requires algorithms that can handle the computational demands.

Several methods have been proposed for

solving the NNS problem. The most popular

method is to apply a partitioning-indexing

scheme to track the approximate location of

points in the multidimensional space.

Among the algorithms that apply this

concept are the binary-tree and cell

techniques. GriSPy implements a cell

technique method to efficiently solve the

NNS problem.

XI Friends of Friends April 26 - 30, 2021

How can we solve this problem with GriSPy?

The GriSPy() class provides the indexed set of points.

Then, we can perform 3 different types of queries:

.bubble_neighbors()

Find neighbors within a given radius. A different radius

for each centre can be provided.

Figure 1 is an example of this method.

.shell_neighbors()
Find neighbors within given lower and upper radii.

.nearest_neighbors()
Find the n-th nearest neighbors for each centre.

Figure 1. Example of a 2D uniform distribution of points (empty circles). We

used GriSPy to index these points in a regular grid. The color crosses mark the

centres of interest and their corresponding neighbors are shown as red circles.

Given an initial set of k-dimensional points,

a regular grid of N

k

 cells is built in the

domain of the data. After the grid is defined,

every point is associated with a cell.

Indexing

Given a centre point and a search radius,

we search for neighbors only within

those cells touched by the radius.

Searching

XI Friends of Friends April 26 - 30, 2021

When should I use GriSPy?
We compared the time performance of GriSPy against similar packages, cKDTree (scipy) and BallTree (scikit-learn), considering the case of a

gravitational N-body simulation. In Figure 2 we show the time spent in each step of the process, Build Time (indexing of points) and Query

Time (searching for neighbors). The principal gain that GriSPy offers is a fast building time, contrary to a fast querying time provided by the

other two methods. When dealing with large sets of ~10

7

 data points, GriSPy outperforms the rest.

Figure 2. Time comparison of GriSPy, cKDTree and BallTree in a gravitational N-body simulation. Each column represents the time

spent in each step, from left to right: Build, Query and Total time. For clarity the legend specifying the package and number of centres

is splitted across the three subplots.

XI Friends of Friends April 26 - 30, 2021

Repository, installation and documentation
Github: https://github.com/mchalela/GriSPy

Documentation: https://grispy.readthedocs.io/en/latest/

XI Friends of Friends April 26 - 30, 2021

https://github.com/mchalela/GriSPy
https://grispy.readthedocs.io/en/latest/

Thanks!

https://github.com/mchalela/GriSPy

XI Friends of Friends April 26 - 30, 2021

https://github.com/mchalela/GriSPy

