Loading Events

« All Events

  • This event has passed.

CG: Fermionic dark matter halos from a maximum entropy principle – Argüelles

April 20 @ 12:30 pm 12:45 pm CMT

The formation and stability of collisionless self-gravitating systems are long-standing problems, which date back to the work of D. Lynden-Bell on violent relaxation and extend to the issue of virialization of dark matter (DM) haloes. An important prediction of such a relaxation process is that spherical equilibrium states can be described by a Fermi–Dirac phase-space distribution, when the extremization of a coarse-grained entropy is reached. In the case of DM fermions, the most general solution develops a degenerate compact core surrounded by a diluted halo. As shown recently, the latter is able to explain the galaxy rotation curves, while the DM core can mimic the central black hole. A yet open problem is whether these kinds of astrophysical core–halo configurations can form at all, and whether they remain stable within cosmological time-scales. We assess these issues by performing a thermodynamic stability analysis in the microcanonical ensemble for solutions with a given particle number at halo virialization in a cosmological framework. For the first time, we demonstrate that the above core–halo DM profiles are stable (i.e. maxima of entropy) and extremely long-lived. We find the existence of a critical point at the onset of instability of the core–halo solutions, where the fermion-core collapses towards a supermassive black hole. For particle masses in the keV range, the core-collapse can only occur for M _vir < 10^9 Mo starting at z _vir ≈ 10 in the given cosmological framework.

Animated Social Media Icons by Acurax Wordpress Development Company
Visit Us On YoutubeVisit Us On Twitter