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Introduction

Exploring the parameter space of a given problem is a very important matter in every mathematical problem. In a
physical context, the exploration of such a space gives us important information regarding the constraints imposed
over the studied system. This was the motivation to develop methods to make those explorations. In this poster we will
work on one particular method called gradient descent (GD), developed firstib Cauchy in 1847 [1].

Gradient descent

The gradient descent method is based on a progressive seg
of steps to minimize a function. Given a function £ to mi
will implement the formula

is a parameter called lea
“length” of the stepsalif thi
eventually can goﬂarn

lllustratlt?n of iy p , J——e F)y = gradllent et In black thé®path defined by the sequence of steps given
method is shown'in‘thefigure to the right. In that image can be by the formula (1) and in colors the surface defined by a
seen how the path followed by the method finds the deepest point  generic function F.

of the function going in the direction opposite to the function’s

gradient. Photo: https://easyai.tech/en/ai-definition/gradient-descent/




Application of the method: The Galaxy rotation curve

Applied to our interests, the function F of the previous page will be a function that quantizes how good are the
predictions made by the model in contrast to the observations. In machine learning, these k|nd of functions are called
loss functions. Specifically, we will use a Mean Squared Error (MSE) as a loss funcitio 1 is defined as:

where C is a normalization constant, N is the number of physical free parameters that

characterize the model, V are the predicted circula pbserved ones. The idea is to fit the free
parameters of the model to the rotati curve ‘.
it is convenient to test the method

Testing the method
To test the method wewill' potential model used in Arguelles et
al. 2018 (henceforth ﬁDU ) at work is assumed that the potential of the

Galaxy is composé omponents, a baryonic component and a fermio
dark matter (DM) one. They adopt as baryonic component one composed by two
bulges (inner and main) and one flat disk. The density of the bulges are modeled
as exponential spheroids and the disk surface mass density is modeled as an
exponential disk. The formulas of such models are given in the table to the right.



Dark halo model

To model the dark component of the Galaxy it is used a semi-analytical model based on a self-gravitating system of
quantum fermions with particle scape effects under the frame of general relativity, usually known as Ruffini - Argtielles
- Rueda (RAR) model with cut-off [3]. This model has four free parameters, the mass of the DM particle, and three
regarding the chemical potential 8., the cut-off energy Wo and the temperature oftheSyStemBaIn its center (r = 0). To
get the mass profile of such a system it has to be solved the Toiman—OppenhSimer=Volkoireguations in addition with
an equation of state and the Tolman [4] and Klein [5] conditions. SeeNSeRadetalled explanation. The solution of the
RAR system of equations gives a halo with three different regimesaa qu I dense core which mimics the central
supermassive black hole behaviour, a sharply decreasingraensi iollowed by an extended plateau and a
Boltzmannian density tail.
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If we apply the gradient desSEERtmethocNe
parameters of the main bulge, disk-and 6. and 3., we will
get a rotation curve(R€) as'SHBWnN to the right. It can be
seen that the fit IS more accurate than in the case of [3].
The dataset of circular velocity points used is the one given i
in Sofue 2013 [6] as used in [3]. 1 A

Circular velocity [km/s]

107! 109
Galactocentric distance [kpc]



Fitting the Galactic potential using more accurate observations

Studies of the Milky Way parameters Ro and Vo 1 in the last few years have determined these values to be
approximately 8 kpc and 238 km/s respectively [2]. In [6] it was used the values 8 kpc and 200 km/s, leading to a
wrong observed rotation curve in the outskirts of the Galaxy
as seen to the right.

3004 @ Sofue 2017 [2] (Vo =238 km/s)

=

@ Sofue 2013 [6] (Vo =200 km/s)

Considering these new values, it was used the RC given in
[2] to fit the Galactic potential assuming it is composed of
two exponential spheroid bulges (inner and main), two
Miyamoto-Nagai disks (thin and thick) and a RARhaIS
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Changes in parameters

To let the code fit the parameters, it was given a seed of good parameters to help the GD method find the minimum of
the loss function in an easier way. Each bulge provided two parameters, each disk three more, and the RAR model
provided four free parameters. The changes in the parameters after 1000 epochs or steps are listed in the table below.
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Conclusions

To conclude, we can remark the po@and the od since it has given a best-fit of the RC of the
Galaxy based on well accepted observations yitational potential constituted of fourteen free
parameters, four of them belonging to & halo model. Also, it is important to mention the speed of the
method, since it has taken ﬂone an Ahour in conclude the 1000 epochs. It is due since the GD method
makes the steps golif the'directionlepposite to the gradient, resulting in a direct method to find the minimum of the loss
function. If it is checMIhe the loss function it can be seen that this fun.has a steep decreasing near 100
epochs, suggestingthat the convergence of the method may be faster than thought. Regarding the physics of the
problem, it is important to notice that the RC is well fitted in galactocentric distances greater than ~2 pc. Inside this
distance, the effects of the quantum core are stronger and other tracers need to be used to fully constrain the free
parameters of the RAR model [3].
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