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Abstract: Nowadays machine learning is a tremendously powerful tool to solve a lot of different 
problems. In this work, we will use a specific machine learning tool known as gradient descent to fit the 
observed Galaxy’s rotation curve. We will perform this fitting by assuming a theoretical velocity profile, 
arising from a composite model which includes baryons and a fermionic dark matter component. The 

last one explains the Galactic halo through a semi-analytical model of self-gravitating quantum fermions 
under the frame of general relativity. It has four free parameters including the particle mass which, in 

addition to the free parameters of the baryons, will be constrained by minimizing a loss function through 
the aforementioned gradient descent method.



Introduction
Exploring the parameter space of a given problem is a very important matter in every mathematical problem. In a 
physical context, the exploration of such a space gives us important information regarding the constraints imposed 
over the studied system. This was the motivation to develop methods to make those explorations. In this poster we will 
work on one particular method called gradient descent (GD), developed first by Louis Augustin Cauchy in 1847 [1]. 

Gradient descent
The gradient descent method is based on a progressive sequence 
of steps to minimize a function. Given a function F to minimize, it 
will implement the formula

where p stands for the independent variable of the function F and γ 
is a parameter called learning rate whose aim is to regulate the 
“length” of the steps. If this formula is implemented recursively, one 
eventually can go closer and closer to a minimum of F. An 
illustration of the procedure followed by the gradient descent 
method is shown in the figure to the right. In that image can be 
seen how the path followed by the method finds the deepest point 
of the function going in the direction opposite to the function’s 
gradient. Photo: https://easyai.tech/en/ai-definition/gradient-descent/

In black the path defined by the sequence of steps given 
by the formula (1) and in colors the surface defined by a 
generic function F.

(1)



Application of the method: The Galaxy rotation curve

Applied to our interests, the function F of the previous page will be a function that quantizes how good are the 
predictions made by the model in contrast to the observations. In machine learning, these kind of functions are called 
loss functions. Specifically, we will use a Mean Squared Error (MSE) as a loss function, which is defined as:

where C is a normalization constant, N is the number of observations, p are the physical free parameters that 
characterize the model, V are the predicted circular velocities and v are the observed ones. The idea is to fit the free 
parameters of the model to the rotation curve given in Sofue 2017 [2]. But before we proceed to explore new frontiers, 
it is convenient to test the method against the results of previous works.

Testing the method

To test the method we will adopt the Galaxy’s potential model used in Argüelles et 
al. 2018 (henceforth PDU18) [3]. In that work is assumed that the potential of the 
Galaxy is composed by two components, a baryonic component and a fermionic 
dark matter (DM) one. They adopt as baryonic component one composed by two 
bulges (inner and main) and one flat disk. The density of the bulges are modeled 
as exponential spheroids and the disk surface mass density is modeled as an 
exponential disk. The formulas of such models are given in the table to the right.



Dark halo model
To model the dark component of the Galaxy it is used a semi-analytical model based on a self-gravitating system of 
quantum fermions with particle scape effects under the frame of general relativity, usually known as Ruffini - Argüelles 
- Rueda (RAR) model with cut-off [3]. This model has four free parameters, the mass of the DM particle, and three 
regarding the chemical potential θ₀, the cut-off energy W₀ and the temperature of the system β₀ in its center (r = 0). To 
get the mass profile of such a system it has to be solved the Tolman–Oppenheimer–Volkoff equations in addition with 
an equation of state and the Tolman [4] and Klein [5] conditions. See [3] for a detailed explanation. The solution of the 
RAR system of equations gives a halo with three different regimes: a quantum dense core which mimics the central 
supermassive black hole behaviour, a sharply decreasing density distribution followed by an extended plateau and a 
Boltzmannian density tail.

Comparison with the rotation curve 
got in Argüelles et al. 2018

If we apply the gradient descent method to fit the free 
parameters of the main bulge, disk and θ₀ and β₀, we will 
get a rotation curve (RC) as shown to the right. It can be 
seen that the fit is more accurate than in the case of [3]. 
The dataset of circular velocity points used is the one given 
in Sofue 2013 [6] as used in [3].



Fitting the Galactic potential using more accurate observations

Studies of the Milky Way parameters R₀ and V₀ ₁ in the last few years have determined these values to be 
approximately 8 kpc and 238 km/s respectively [2]. In [6] it was used the values 8 kpc and 200 km/s, leading to a 
wrong observed rotation curve in the outskirts of the Galaxy                                                                                            
as seen to the right.

Considering these new values, it was used the RC given in 
[2] to fit the Galactic potential assuming it is composed of 
two exponential spheroid bulges (inner and main), two 
Miyamoto-Nagai disks (thin and thick) and a RAR halo.

The result of this 
fitting and the 
corresponding 
loss function are 
shown to the 
right.

₁ Distance from the Sun to the 
galactic center and circular 
velocity of the LSR, 
respectively.



Changes in parameters

Conclusions

To let the code fit the parameters, it was given a seed of good parameters to help the GD method find the minimum of 
the loss function in an easier way. Each bulge provided two parameters, each disk three more, and the RAR model 
provided four free parameters. The changes in the parameters after 1000 epochs or steps are listed in the table below.

To conclude, we can remark the power and the accuracy of the method since it has given a best-fit of the RC of the 
Galaxy based on well accepted observations assuming a gravitational potential constituted of fourteen free 
parameters, four of them belonging to a semi-analytical DM halo model. Also, it is important to mention the speed of the 
method, since it has taken about one and half an hour in conclude the 1000 epochs. It is due since the GD method 
makes the steps go in the direction opposite to the gradient, resulting in a direct method to find the minimum of the loss 
function. If it is checked the plot of the loss function it can be seen that this function has a steep decreasing near 100 
epochs, suggesting that the convergence of the method may be faster than thought. Regarding the physics of the 
problem, it is important to notice that the RC is well fitted in galactocentric distances greater than ~2 pc. Inside this 
distance, the effects of the quantum core are stronger and other tracers need to be used to fully constrain the free 
parameters of the RAR model [3].
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